Predicting ADHD Risk from Touch Interaction Data

被引:9
|
作者
Mock, Philipp [1 ]
Tibus, Maike [2 ]
Ehlis, Ann-Christine [3 ]
Baayen, Harald [4 ]
Gerjets, Peter [1 ]
机构
[1] Leibniz Inst Wissensmedien, Tubingen, Germany
[2] Univ Tubingen, Hector Res Inst Educ Sci, Tubingen, Germany
[3] Univ Hosp Tubingen, Dept Psychiat & Psychotherapy, Tubingen, Germany
[4] Univ Tubingen, Dept Linguist, Tubingen, Germany
关键词
Multi-Touch; Machine-Learning; User Modeling; ADHD; ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; CHILDREN; DIAGNOSIS;
D O I
10.1145/3242969.3242986
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R-2 = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
  • [1] Predicting ADHD in alcohol dependence using polygenic risk scores for ADHD
    Patel, Kejal H. S.
    Walters, G. Bragi
    Stefansson, Hreinn
    Stefansson, Kari
    Degenhardt, Franziska
    Nothen, Markus
    Van Der Veen, Tracey
    Demontis, Ditte
    Borglum, Anders
    Kristiansen, Mark
    Bass, Nicholas J.
    McQuillin, Andrew
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2024, 195 (04)
  • [2] Predicting childhood ADHD-linked symptoms from prenatal and perinatal data in the ABCD cohort
    Dooley, Niamh
    Healy, Colm
    Cotter, David
    Clarke, Mary
    Cannon, Mary
    DEVELOPMENT AND PSYCHOPATHOLOGY, 2024, 36 (02) : 979 - 992
  • [3] Predicting Epidemic Risk from Past Temporal Contact Data
    Valdano, Eugenio
    Poletto, Chiara
    Giovannini, Armando
    Palma, Diana
    Savini, Lara
    Colizza, Vittoria
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (03)
  • [4] Predicting Risk Perception: New Insights from Data Science
    Bhatia, Sudeep
    MANAGEMENT SCIENCE, 2019, 65 (08) : 3800 - 3823
  • [5] Predicting osteoporosis from risk factors with data mining ensemble
    Rae, S
    Wang, W
    OSTEOPOROSIS INTERNATIONAL, 2002, 13 : S116 - S117
  • [6] Predicting the need for XAI from high-granularity interaction data
    de Santana, Vagner Figueredo
    Fucs, Ana
    Segura, Vinicius
    de Moraes, Daniel Brugnaro
    Cerqueira, Renato
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2023, 175
  • [7] Predicting interaction networks of breast cancer risk genes using multiple microarray data
    K Yano
    Breast Cancer Research, 12
  • [8] Predicting interaction networks of breast cancer risk genes using multiple microarray data
    Yano, K.
    BREAST CANCER RESEARCH, 2010, 12 : S13 - S14
  • [9] The interaction of emotional information from the voice and touch
    Oya, Rika
    Tanaka, Akihiro
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2022, 43 (05) : 291 - 293
  • [10] PREDICTING TOUCH OPERATIONS BY USING HOVER INFORMATION IN SMARTPHONES FOR DATA PREFETCHING
    Onishi, Takeo
    Shiroshima, Takahiro
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2016,