Internal layers intersecting the boundary of domain in the Allen-Cahn equation

被引:4
|
作者
Iibun, T [1 ]
Sakamoto, K
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398526, Japan
[2] Hiroshima Univ, Grad Sch Sci, Inst Nonlinear Sci & Appl Math, Higashihiroshima 7398526, Japan
关键词
internal layers; the Allen-Cahn equation; mean curvature flow; singular perturbation; asymptotic expansion;
D O I
10.1007/BF03167411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Allen-Cahn equation with balanced nonlinearity, we show the existence of equilibrium internal layers intersecting the boundary of two dimensional bounded smooth domains. Stability analysis is carried out for the layers and local shape of the boundary is classified according to the stability of the layers. Numerical simulations are exhibited which indicate that bifurcations occur as the domain boundary is perturbed.
引用
收藏
页码:697 / 738
页数:42
相关论文
共 50 条
  • [41] Symmetry of Entire Solutions to the Allen-Cahn Equation
    Gui, Changfeng
    Zhang, Fang
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 587 - 612
  • [42] The fractional Allen-Cahn equation with the sextic potential
    Lee, Seunggyu
    Lee, Dongsun
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 351 : 176 - 192
  • [43] On the discretisation in time of the stochastic Allen-Cahn equation
    Kovacs, Mihaly
    Larsson, Stig
    Lindgren, Fredrik
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) : 966 - 995
  • [44] A hybrid FEM for solving the Allen-Cahn equation
    Shin, Jaemin
    Park, Seong-Kwan
    Kim, Junseok
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 606 - 612
  • [45] Stochastic Allen-Cahn equation with logarithmic potential
    Bertacco, Federico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [46] The hyperbolic Allen-Cahn equation: exact solutions
    Nizovtseva, I. G.
    Galenko, P. K.
    Alexandrov, D. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (43)
  • [47] Transition layer for the heterogeneous Allen-Cahn equation
    Mahmoudi, Fethi
    Malchiodi, Andrea
    Wei, Juncheng
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03): : 609 - 631
  • [48] Metastable speeds in the fractional Allen-Cahn equation
    Achleitner, Franz
    Kuehn, Christian
    Melenk, Jens M.
    Rieder, Alexander
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408
  • [49] Stability of Planar Waves in the Allen-Cahn Equation
    Matano, Hiroshi
    Nara, Mitsunori
    Taniguchi, Masaharu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (09) : 976 - 1002
  • [50] The Allen-Cahn equation with generic initial datum
    Hairer, Martin
    Le, Khoa
    Rosati, Tommaso
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 186 (3-4) : 957 - 998