Super-resolution mapping using the two-point histogram and multi-source imagery

被引:0
|
作者
Atkinson, P. M. [1 ]
机构
[1] Univ Southampton, Sch Geog, Southampton SO17 1BJ, Hants, England
关键词
HOPFIELD NEURAL-NETWORK; LAND-COVER; SPATIAL-RESOLUTION; SCALE;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
A new method for super-resolution classification from remotely sensed imagery is presented. The method allows prediction of a super-resolution (sub-pixel) land cover map from a coarse spatial resolution (original pixel) land cover proportions image and an intermediate spatial resolution panchromatic (Pan) image. The method is based on spatial simulated annealing and combines two objectives: (i) to match a prior sub-pixel two-point histogram obtained from some training image and (ii) to match the predictions made of an intermediate spatial resolution panchromatic image from the super-resolution classification via a forward model to an observed panchromatic image. The method is demonstrated on simulated remotely sensed imagery. The main advantage of the Pan image is to fix locally the outcome of the two-point histogram objective function.
引用
收藏
页码:307 / +
页数:3
相关论文
共 50 条
  • [31] Large-Scale River Mapping Using Contrastive Learning and Multi-Source Satellite Imagery
    Wei, Zhihao
    Jia, Kebin
    Liu, Pengyu
    Jia, Xiaowei
    Xie, Yiqun
    Jiang, Zhe
    REMOTE SENSING, 2021, 13 (15)
  • [32] Using Super-Resolution Algorithms for Small Satellite Imagery: A Systematic Review
    Karwowska, Kinga
    Wierzbicki, Damian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3292 - 3312
  • [33] Hyperspectral Imagery Spatial Super-Resolution Using Generative Adversarial Network
    Wang, Baorui
    Zhang, Shun
    Feng, Yan
    Mei, Shaohui
    Jia, Sen
    Du, Qian
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 948 - 960
  • [34] SUPER-RESOLUTION OF REMOTE SENSING IMAGERY USING IMPLICIT DEGRADATION MODELING
    Oh, Han
    Kim, Dongjin
    Lee, Sun Gu
    Chung, Daewon
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5146 - 5149
  • [35] Dynamic Multi-mapping Convolutional Network for Image Super-Resolution
    Wang, Shiping
    Bi, Duyan
    He, Linyuan
    Wang, Chen
    Fan, Zunlin
    Ding, Wenshan
    Liu, Kun
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2018, : 276 - 280
  • [36] Earth remote sensing imagery classification using a multi-sensor super-resolution fusion algorithm
    Belov, A. M.
    Denisova, A. Y.
    COMPUTER OPTICS, 2020, 44 (04) : 627 - +
  • [37] Strain mapping accuracy improvement using super-resolution techniques
    Barcena-Gonzalez, G.
    Guerrero-Lebrero, M. P.
    Guerrero, E.
    Fernandez-Reyes, D.
    Gonzalez, D.
    Mayoral, A.
    Utrilla, A. D.
    Ulloa, J. M.
    Galindo, P. L.
    JOURNAL OF MICROSCOPY, 2016, 262 (01) : 50 - 58
  • [39] A super-resolution mapping method using local indicator variograms
    Jin, Huiran
    Mountrakis, Giorgos
    Li, Peijun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (24) : 7747 - 7773
  • [40] Super-resolution surface mapping using the trajectories of molecular probes
    Robert Walder
    Nathaniel Nelson
    Daniel K. Schwartz
    Nature Communications, 2