Geodesic squared exponential kernel for non-rigid shape registration

被引:0
|
作者
Jousse, Florent [1 ,2 ]
Pennec, Xavier [1 ]
Delingette, Herve [1 ]
Gonzalez, Matilde [2 ]
机构
[1] Univ Cote dAzur, EPIONE Team, INRIA, Sophia Antipolis, France
[2] QuantifiCare, Qc Labs Dept, Sophia Antipolis, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the problem of non-rigid registration of 3D scans, which is at the core of shape modeling techniques. Firstly, we propose a new kernel based on geodesic distances for the Gaussian Process Morphable Models (GPMMs) framework. The use of geodesic distances into the kernel makes it more adapted to the topological and geometric characteristics of the surface and leads to more realistic deformations around holes and curved areas. Since the kernel possesses hyperparameters we have optimized them for the task of face registration on the FaceWarehouse dataset. We show that the Geodesic squared exponential kernel performs significantly better than state of the art kernels for the task of face registration on all the 20 expressions of the FaceWarehouse dataset. Secondly, we propose a modification of the loss function used in the non-rigid ICP registration algorithm, that allows to weight the correspondences according to the confidence given to them. As a use case, we show that we can make the registration more robust to outliers in the 3D scans, such as non-skin parts.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Grid refinement in adaptive non-rigid registration
    Park, HJ
    Meyer, CR
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 2, 2003, 2879 : 796 - 803
  • [42] NON-RIGID REGISTRATION GUIDED BY LANDMARKS AND LEARNING
    Eckl, Jutta
    Daum, Volker
    Hornegger, Joachim
    Pohl, Kilian M.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 704 - 707
  • [43] Non-rigid registration using distance functions
    Paragios, N
    Rousson, M
    Ramesh, V
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (2-3) : 142 - 165
  • [44] Linewise Non-Rigid Point Cloud Registration
    Castillon, Miguel
    Ridao, Pere
    Siegwart, Roland
    Cadena, Cesar
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 7044 - 7051
  • [45] Volume reconstruction based on non-rigid registration
    Bao, Xudong
    Xu, Danhua
    Toumoulin, Christine
    Luo, Limin
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 6536 - +
  • [46] An efficient algorithm for non-rigid object registration
    Makovetskii, A.
    Voronin, S.
    Kober, V
    Voronin, A.
    COMPUTER OPTICS, 2020, 44 (01) : 67 - 73
  • [47] Survey of Non-Rigid Registration Tools in Medicine
    Keszei, Andras P.
    Berkels, Benjamin
    Deserno, Thomas M.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (01) : 102 - 116
  • [48] Probabilistic inference of regularisation in non-rigid registration
    Simpson, Ivor J. A.
    Schnabel, Julia A.
    Groves, Adrian R.
    Andersson, Jesper L. R.
    Woolrich, Mark W.
    NEUROIMAGE, 2012, 59 (03) : 2438 - 2451
  • [49] Non-rigid registration under anisotropic deformations
    Dyke, Roberto M.
    Lai, Yu-Kun
    Rosin, Paul L.
    Tam, Gary K. L.
    COMPUTER AIDED GEOMETRIC DESIGN, 2019, 71 : 142 - 156
  • [50] Similarity metrics for groupwise non-rigid registration
    Bhatia, Kanwal K.
    Hajnal, Jo
    Hammers, Alexander
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 544 - +