Salient representation of volume data

被引:0
|
作者
Hladuvka, J [1 ]
König, A [1 ]
Gröller, E [1 ]
机构
[1] Vienna Univ Technol, Inst Comp Graph & Algorithms, A-1060 Vienna, Austria
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a novel method for identification of objects of interest in volume data. Our approach conveys the information contained in two essentially different concepts, the object's boundaries and the narrow solid structures, in an easy and uniform way. The second order derivative operators in directions reaching minimal response are employed for this task. To show the superior performance of our method, we provide a comparison with its main competitor - surface extraction from areas of maximal gradient magnitude. We show that our approach provides the possibility to represent volume data by a subset of a nominal size.
引用
收藏
页码:203 / +
页数:10
相关论文
共 50 条
  • [41] Synthetic Data Supervised Salient Object Detection
    Wu, Zhenyu
    Wang, Lin
    Wang, Wei
    Shi, Tengfei
    Chen, Chenglizhao
    Hao, Aimin
    Li, Shuo
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5557 - 5565
  • [42] Object-based representation and analysis of light and electron microscopic volume data using Blender
    Asadulina, Albina
    Conzelmann, Markus
    Williams, Elizabeth A.
    Panzera, Aurora
    Jekely, Gaspar
    BMC BIOINFORMATICS, 2015, 16
  • [43] Object-based representation and analysis of light and electron microscopic volume data using Blender
    Albina Asadulina
    Markus Conzelmann
    Elizabeth A. Williams
    Aurora Panzera
    Gáspár Jékely
    BMC Bioinformatics, 16
  • [44] Hierarchical representation and coding of 3D mesh geometry for transmission of surface/volume data
    Celasun, Isil
    Eroksuz, Serkan
    Siddiqui, Rizwan A.
    Dogan, Ertugrul
    Tekalp, A. Murat
    2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 948 - +
  • [45] Accurate Calculation of Upper Biomass Volume of Single Trees Using Matrixial Representation of LiDAR Data
    Kurdi, Fayez Tarsha
    Lewandowicz, Elzbieta
    Gharineiat, Zahra
    Shan, Jie
    REMOTE SENSING, 2024, 16 (12)
  • [46] Salient regions detection using convolutional neural networks and color volume
    Liu, Guang-Hai
    Hou, Yingkun
    2017 INTERNATIONAL SYMPOSIUM ON APPLICATION OF MATERIALS SCIENCE AND ENERGY MATERIALS (SAMSE 2017), 2018, 322
  • [47] DRC: Discrete Representation Classifier With Salient Features via Fixed-Prototype
    Li, Qinglei
    Wang, Qi
    Qin, Yongbin
    Dong, Xinyu
    Wu, Xingcai
    Chen, Shiming
    Liu, Wu
    Liu, Yong-Jin
    Luo, Jiebo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (01) : 118 - 133
  • [48] The Rhetoric of Thick Representation: How Pictures Render the Importance and Strength of an Argument Salient
    Kjeldsen, Jens E.
    ARGUMENTATION, 2015, 29 (02) : 197 - 215
  • [49] Salient object detection using content-sensitive hypergraph representation and partitioning
    Liang, Zhen
    Chi, Zheru
    Fu, Hong
    Feng, Dagan
    PATTERN RECOGNITION, 2012, 45 (11) : 3886 - 3901
  • [50] Lightweight Multi-modal Representation Learning for RGB Salient Object Detection
    Xiao, Yun
    Huang, Yameng
    Li, Chenglong
    Liu, Lei
    Zhou, Aiwu
    Tang, Jin
    COGNITIVE COMPUTATION, 2023, 15 (06) : 1868 - 1883