MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR SCHRODINGER-MAXWELL SYSTEM

被引:5
|
作者
Fang, Yanqin [1 ]
Zhang, Jihui [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
关键词
Schrodinger-Maxwell; Ljusternik-Schnirelmann theory; multiple solutions; POSITIVE SOLUTIONS; POISSON PROBLEM; SEMICLASSICAL STATES; BOUND-STATES; EQUATIONS; POTENTIALS; MOLECULES; SPHERES; WAVES; ATOMS;
D O I
10.3934/cpaa.2011.10.1267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following system -epsilon(2)Delta v + V(x)v + psi(x)v = v(p), x is an element of R(3), -Delta psi = 1/epsilon v(2), lim(vertical bar x vertical bar -> infinity)psi(x) = 0, x is an element of R(3), where epsilon > 0, p is an element of (3, 5), V is positive potential. We relate the number of solutions with topology of the set where V attain their minimum value. By applying Ljusternik-Schnirelmann theory, we prove the multiplicity of solutions.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 50 条
  • [21] Clustered layers for the Schrodinger-Maxwell system on a ball
    Zhang, Pingzheng
    Sun, Jianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 16 (03) : 657 - 688
  • [22] INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRODINGER-MAXWELL EQUATIONS
    Xu, Jiafa
    Wei, Zhongli
    O'Regan, Donal
    Cui, Yujun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (03): : 1165 - 1182
  • [23] Infinitely many solutions of fractional Schrodinger-Maxwell equations
    Kim, Jae-Myoung
    Bae, Jung-Hyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [24] On separable Schrodinger-Maxwell equations
    Zhdanov, R
    Lutfullin, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6454 - 6458
  • [25] Infinitely many solutions for a class of sublinear Schrodinger-Maxwell equations
    Sun, Juntao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) : 514 - 522
  • [26] Solitons in Schrodinger-Maxwell equations
    Benci, Vieri
    Fortunato, Donato
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (01) : 101 - 132
  • [27] Low Energy Solutions for the Semiclassical Limit of Schrodinger-Maxwell Systems
    Ghimenti, Marco
    Micheletti, Anna Maria
    ANALYSIS AND TOPOLOGY IN NONLINEAR DIFFERENTIAL EQUATIONS: A TRIBUTE TO BERNHARD RUF ON THE OCCASION OF HIS 60TH BIRTHDAY, 2014, 85 : 287 - 300
  • [28] Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations
    D'Aprile, T
    Mugnai, D
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 893 - 906
  • [29] ON THE EXISTENCE OF SOLUTIONS FOR SCHRODINGER-MAXWELL SYSTEMS IN R3
    Yang, Minbo
    Zhao, Fukun
    Ding, Yanheng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (05) : 1655 - 1674
  • [30] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791