MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR SCHRODINGER-MAXWELL SYSTEM

被引:5
|
作者
Fang, Yanqin [1 ]
Zhang, Jihui [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
关键词
Schrodinger-Maxwell; Ljusternik-Schnirelmann theory; multiple solutions; POSITIVE SOLUTIONS; POISSON PROBLEM; SEMICLASSICAL STATES; BOUND-STATES; EQUATIONS; POTENTIALS; MOLECULES; SPHERES; WAVES; ATOMS;
D O I
10.3934/cpaa.2011.10.1267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following system -epsilon(2)Delta v + V(x)v + psi(x)v = v(p), x is an element of R(3), -Delta psi = 1/epsilon v(2), lim(vertical bar x vertical bar -> infinity)psi(x) = 0, x is an element of R(3), where epsilon > 0, p is an element of (3, 5), V is positive potential. We relate the number of solutions with topology of the set where V attain their minimum value. By applying Ljusternik-Schnirelmann theory, we prove the multiplicity of solutions.
引用
收藏
页码:1267 / 1279
页数:13
相关论文
共 50 条