Segmentation of Multi-Modal MRI Brain Tumor Sub-Regions Using Deep Learning

被引:12
|
作者
Srinivas, B. [1 ]
Rao, Gottapu Sasibhushana [2 ]
机构
[1] MVGR Coll Engn A, Dept ECE, Visakhapatnam 535005, Andhra Pradesh, India
[2] Andhra Univ Coll Engn A, Dept ECE, Visakhapatnam 530003, Andhra Pradesh, India
关键词
Automatic brain tumor segmentation; CNN; Deep learning; Enhancing tumor; MRI brain tumor image processing; Sub regions of brain tumor segmentation; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1007/s42835-020-00448-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In medical imaging, extraction of brain tumor region in the magnetic resonance image (MRI) is not sufficient, but finding the tumor extension is necessary to plan best treatment to improve the survival rate as it depends on tumor's size, location, and patient's age. Manually extracting the brain tumor sub-regions from MRI volume is tedious, time consuming and the inherently complex brain tumor images requires a proficient radiologist. Thus, a reliable multi-modal deep learning models are proposed for automatic segmentation to extract the sub-regions like enhancing tumor (ET), tumor core (TC), and whole tumor (WT). These models are constructed on the basis of U-net and VGG16 architectures. The whole tumor is obtained by segmenting T2-weighted images and cross-check the edema's extension in T2 fluid attenuated inversion recovery (FLAIR). ET and TC are both extracted by evaluating the hyper-intensities in T1-weighted contrast enhanced images. The proposed method has produced better results in terms of dice similarity index, Jaccard similarity index, accuracy, specificity, and sensitivity for segmented sub regions. The experimental results on BraTS 2018 database shows the proposed DL model outperforms with average dice coefficients of 0.91521, 0.92811, 0.96702, and Jaccard coefficients of 0.84715, 0.88357, 0.93741 for ET, TC, and WT respectively.
引用
收藏
页码:1899 / 1909
页数:11
相关论文
共 50 条
  • [21] Automated brain tumor segmentation on multi-modal MR image using SegNet
    Salma Alqazzaz
    Xianfang Sun
    Xin Yang
    Len Nokes
    Computational Visual Media, 2019, 5 (02) : 209 - 219
  • [22] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    DIAGNOSTICS, 2023, 13 (09)
  • [23] DIGEST: DEEPLY SUPERVISED KNOWLEDGE TRANSFER NETWORK LEARNING FOR BRAIN TUMOR SEGMENTATION WITH INCOMPLETE MULTI-MODAL MRI SCANS
    Li, Haoran
    Li, Cheng
    Huang, Weijian
    Zheng, Xiawu
    Xi, Yan
    Wang, Shanshan
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [24] Flexible Fusion Network for Multi-Modal Brain Tumor Segmentation
    Yang, Hengyi
    Zhou, Tao
    Zhou, Yi
    Zhang, Yizhe
    Fu, Huazhu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3349 - 3359
  • [25] Brain tumor segmentation based on the dual-path network of multi-modal MRI images
    Fang, Lingling
    Wang, Xin
    PATTERN RECOGNITION, 2022, 124
  • [26] Overview of Multi-Modal Brain Tumor MR Image Segmentation
    Zhang, Wenyin
    Wu, Yong
    Yang, Bo
    Hu, Shunbo
    Wu, Liang
    Dhelim, Sahraoui
    HEALTHCARE, 2021, 9 (08)
  • [27] A Generative Model for Brain Tumor Segmentation in Multi-Modal Images
    Menze, Bjoern H.
    Van Leemput, Koen
    Lashkari, Danial
    Weber, Marc-Andre
    Ayache, Nicholas
    Golland, Polina
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT II,, 2010, 6362 : 151 - +
  • [28] Multi-modal brain tumor image segmentation based on SDAE
    Ding, Yi
    Dong, Rongfeng
    Lan, Tian
    Li, Xuerui
    Shen, Guangyu
    Chen, Hao
    Qin, Zhiguang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2018, 28 (01) : 38 - 47
  • [29] Deep learning ensembles for detecting brain metastases in longitudinal multi-modal MRI studies
    Machura, Bartosz
    Kucharski, Damian
    Bozek, Oskar
    Eksner, Bartosz
    Kokoszka, Bartosz
    Pekala, Tomasz
    Radom, Mateusz
    Strzelczak, Marek
    Zarudzki, Lukasz
    Gutierrez-Becker, Benjamin
    Krason, Agata
    Tessier, Jean
    Nalepa, Jakub
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2024, 116
  • [30] HGG and LGG Brain Tumor Segmentation in Multi-Modal MRI Using Pretrained Convolutional Neural Networks of Amazon Sagemaker
    Lefkovits, Szidonia
    Lefkovits, Laszlo
    Szilagyi, Laszlo
    APPLIED SCIENCES-BASEL, 2022, 12 (07):