Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations

被引:27
|
作者
Liu, Suile [1 ]
Yang, Dachun [1 ]
Yang, Dongyong [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Upper doubling; Geometrically doubling; Dominating function; Atom; Hardy space; Calderon-Zygmund operator; Metric measure space; H-1; BMO; THEOREM;
D O I
10.1016/j.jmaa.2011.07.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a metric measure space satisfying the upper doubling and the geometrically doubling conditions in the sense of T. Hytonen. In this paper, the authors prove that the boundedness of a Calderon-Zygmund operator T on L-2(mu) is equivalent to either of the boundedness of T from the atomic Hardy space H-1(mu) to L-1,L-infinity(mu) or from H-1(mu) to L-1(mu). To this end, the authors first establish an interpolation result that a sublinear operator which is bounded from H-1(mu) to L-1,L-infinity(mu) and from L-p0(mu) to L-p0,L-infinity(mu) for some p(0) is an element of (1, infinity) is also bounded on L-p(mu) for all p is an element of (1, p(0)). A main tool used in this paper is the Calderon-Zygmund decomposition in this setting established by B.T. Anh and X.T. Duong. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:258 / 272
页数:15
相关论文
共 50 条
  • [41] Calderon-Zygmund operators in Morrey spaces
    Rosenthal, Marcel
    Triebel, Hans
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (01): : 1 - 11
  • [42] BOUNDEDNESS OF SUBLINEAR OPERATORS GENERATED BY CALDERON-ZYGMUND OPERATORS ON GENERALIZED WEIGHTED MORREY SPACES
    Karaman, Turhan
    Guliyev, Vagif S.
    Serbetci, Ayhan
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2014, 60 (01): : 227 - 244
  • [43] LOGARITHMIC BUMP CONDITIONS FOR CALDERON-ZYGMUND OPERATORS ON SPACES OF HOMOGENEOUS TYPE
    Anderson, Theresa C.
    Cruz-Uribe, David
    Moen, Kabe
    PUBLICACIONS MATEMATIQUES, 2015, 59 (01) : 17 - 43
  • [44] Weak boundedness of Calderon-Zygmund operators on noncommutative L1-spaces
    Cadilhac, Leonard
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (03) : 769 - 796
  • [45] Boundedness of θ-Type Calderon-Zygmund Operators and Commutators in the Generalized Weighted Morrey Spaces
    Wang, Hua
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [46] Boundedness properties of pseudo-differential and Calderon-Zygmund operators on modulation spaces
    Sugimoto, Mitsuru
    Tomita, Naohito
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (01) : 124 - 143
  • [47] THE BOUNDEDNESS OF CALDERON-ZYGMUND OPERATORS ON HARDY-SPACES HAP AND ITS APPLICATIONS
    LU, SZ
    YANG, DC
    CHINESE SCIENCE BULLETIN, 1992, 37 (02): : 105 - 107
  • [48] Calderon-Zygmund Operators and Commutators in Spaces of Homogeneous Type: Weighted Inequalities
    Anderson, T. C.
    Damian, W.
    ANALYSIS MATHEMATICA, 2022, 48 (04) : 939 - 959
  • [49] BOUNDEDNESS FOR THE MULTI-COMMUTATORS OF CALDERON-ZYGMUND OPERATORS
    Tao, Xiangxing
    Wu, Yunpin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 655 - 672
  • [50] Boundedness of Calderon-Zygmund operators on ball Campanato-type function spaces
    Chen, Yiqun
    Jia, Hongchao
    Yang, Dachun
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)