INVERSE BOUNDARY PROBLEMS FOR BIHARMONIC OPERATORS IN TRANSVERSALLY ANISOTROPIC GEOMETRIES

被引:8
|
作者
Yan, Lili [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
inverse problems; biharmonic operators; conformally transversally geometries; CALDERON PROBLEM; 1ST-ORDER PERTURBATION; SCHRODINGER-OPERATORS; MANIFOLDS;
D O I
10.1137/21M1391419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study inverse boundary problems for first order perturbations of the biharmonic operator on a conformally transversally anisotropic Riemannian manifold of dimension n \geq 3. We show that a continuous first order perturbation can be determined uniquely from the knowledge of the set of the Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the transversal manifold is injective.
引用
收藏
页码:6617 / 6653
页数:37
相关论文
共 50 条
  • [1] Inverse Problems for Magnetic Schrodinger Operators in Transversally Anisotropic Geometries
    Krupchyk, Katya
    Uhlmann, Gunther
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 361 (02) : 525 - 582
  • [2] Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries
    Katya Krupchyk
    Gunther Uhlmann
    Communications in Mathematical Physics, 2018, 361 : 525 - 582
  • [3] Partial data inverse problems for magnetic Schrodinger operators on conformally transversally anisotropic manifolds
    Selim, Salem
    Yan, Lili
    ASYMPTOTIC ANALYSIS, 2024, 140 (1-2) : 25 - 36
  • [4] The Calderon problem in transversally anisotropic geometries
    Ferreira, David Dos Santos
    Kurylev, Yaroslav
    Lassas, Matti
    Salo, Mikko
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) : 2579 - 2626
  • [5] The Linearized Calderon Problem in Transversally Anisotropic Geometries
    Ferreira, David Dos Santos
    Kurylev, Yaroslav
    Lassas, Matti
    Liimatainen, Tony
    Salo, Mikko
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (22) : 8729 - 8765
  • [6] INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRODINGER EQUATIONS ON CONFORMALLY TRANSVERSALLY ANISOTROPIC MANIFOLDS
    Krupchyk, Katya
    Uhlmann, Gunther
    ANALYSIS & PDE, 2023, 16 (08): : 1825 - 1868
  • [7] MONOTONE OPERATORS AND NONLINEAR BIHARMONIC BOUNDARY-VALUE PROBLEMS
    DUNNINGER, DR
    LOCKER, J
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) : 39 - 48
  • [8] RECONSTRUCTING A POTENTIAL PERTURBATION OF THE BIHARMONIC OPERATOR ON TRANSVERSALLY ANISOTROPIC MANIFOLDS
    Yan, Lili
    INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) : 136 - 156
  • [9] Inverse problems for third-order nonlinear perturbations of biharmonic operators
    Bhattacharyya, Sombuddha
    Krupchyk, Katya
    Kumar Sahoo, Suman
    Uhlmann, Gunther
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2025, 50 (03) : 407 - 440
  • [10] Inverse Boundary Value Problem for Anisotropic Heat Operators
    Kim, Kyoungsun
    Nakamura, Gen
    INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS 2010, 2011, 290