Deep Domain Adaptation With Differential Privacy

被引:20
|
作者
Wang, Qian [1 ,2 ]
Li, Zixi [1 ,2 ]
Zou, Qin [3 ]
Zhao, Lingchen [1 ,2 ]
Wang, Song [4 ,5 ]
机构
[1] Wuhan Univ, Key Lab Aerosp Informat Secur & Trusted Comp, Minist Educ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[2] State Key Lab Cryptog, Beijing 100878, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[4] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA
[5] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China
关键词
Domain adaptation; privacy preservation; differential privacy; deep learning; convolutional neural network; KERNEL; NOISE;
D O I
10.1109/TIFS.2020.2983254
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled data. However, due to the exposure of the trained model to the target domain, the user privacy may potentially be compromised. Nevertheless, the private information may be encoded into the representations in different stages of the deep neural networks, i.e., hierarchical convolutional feature maps, which poses a great challenge for a full-fledged privacy protection. In this paper, we propose a novel differentially private domain adaptation framework called DPDA to achieve domain adaptation with privacy assurance. Specifically, we perform domain adaptation in an adversarial-learning manner and embed the differentially private design into specific layers and learning processes. Although applying differential privacy techniques directly will undermine the performance of deep neural networks, DPDA can increase the classification accuracy for the unlabeled target data compared to the prior arts. We conduct extensive experiments on standard benchmark datasets, and the results show that our proposed DPDA can indeed achieve high accuracy in many domain adaptation tasks with only a modest privacy loss.
引用
收藏
页码:3093 / 3106
页数:14
相关论文
共 50 条
  • [21] Medical imaging deep learning with differential privacy
    Ziller, Alexander
    Usynin, Dmitrii
    Braren, Rickmer
    Makowski, Marcus
    Rueckert, Daniel
    Kaissis, Georgios
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [22] Optimal Balance of Privacy and Utility with Differential Privacy Deep Learning Frameworks
    Kotevska, Olivera
    Alamudun, Folami
    Stanley, Christopher
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 425 - 430
  • [23] Towards Decentralized Deep Learning with Differential Privacy
    Cheng, Hsin-Pai
    Yu, Patrick
    Hu, Haojing
    Zawad, Syed
    Yan, Feng
    Li, Shiyu
    Li, Hai
    Chen, Yiran
    CLOUD COMPUTING - CLOUD 2019, 2019, 11513 : 130 - 145
  • [24] When Deep Learning Meets Differential Privacy: Privacy,Security, and More
    Li, Xinyan
    Chen, Yufei
    Wang, Cong
    Shen, Chao
    IEEE NETWORK, 2021, 35 (06): : 148 - 155
  • [25] Differential Privacy Preserving Deep Learning in Healthcare
    Wu, Xintao
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 8 - 8
  • [26] Differential privacy in deep learning: A literature survey
    Pan, Ke
    Ong, Yew-Soon
    Gong, Maoguo
    Li, Hui
    Qin, A. K.
    Gao, Yuan
    NEUROCOMPUTING, 2024, 589
  • [27] Differential Privacy for Deep and Federated Learning: A Survey
    El Ouadrhiri, Ahmed
    Abdelhadi, Ahmed
    IEEE ACCESS, 2022, 10 : 22359 - 22380
  • [28] Medical imaging deep learning with differential privacy
    Alexander Ziller
    Dmitrii Usynin
    Rickmer Braren
    Marcus Makowski
    Daniel Rueckert
    Georgios Kaissis
    Scientific Reports, 11
  • [29] Unsupervised Domain Adaptation via Deep Conditional Adaptation Network
    Ge, Pengfei
    Ren, Chuan-Xian
    Xu, Xiao-Lin
    Yan, Hong
    PATTERN RECOGNITION, 2023, 134
  • [30] Deep domain similarity Adaptation Networks for across domain classification
    Chen, Yu
    Yang, Chunling
    Zhang, Yan
    PATTERN RECOGNITION LETTERS, 2018, 112 : 270 - 276