Deep spatial transformers for autoregressive data-driven forecasting of geophysical turbulence

被引:12
|
作者
Chattopadhyay, Ashesh [1 ]
Mustafa, Mustafa [2 ]
Hassanzadeh, Pedram [1 ]
Kashinath, Karthik [2 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA USA
关键词
spatial transformers; equivariance; geophysical turbulence; spatio-temporal; WEATHER; CLIMATE;
D O I
10.1145/3429309.3429325
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A deep spatial transformer based encoder-decoder model has been developed to autoregressively predict the time evolution of the upper layer's stream function of a two-layered quasi-geostrophic (QG) system without any information about the lower layer's stream function. The spatio-temporal complexity of QG flow is comparable to the complexity of 500hPa Geopotential Height (Z500) of fully coupled climate models or even the Z500 which is observed in the atmosphere, based on the instantaneous attractor dimension metric. The ability to predict autoregressively, the turbulent dynamics of QG is the first step towards building data-driven surrogates for more complex climate models. We show that the equivariance preserving properties of modern spatial transformers incorporated within a convolutional encoder-decoder module can predict up to 9 days in a QG system (outperforming a baseline persistence model and a standard convolutional encoder decoder with a custom loss function). The proposed data-driven model remains stable for multiple years thus promising us of a stable and physical data-driven climate model.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 50 条
  • [21] DATA-DRIVEN TIME PARALLELISM VIA FORECASTING
    Carlberg, Kevin
    Brencher, Lukas
    Haasdonk, Bernard
    Barth, Andrea
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : B466 - B496
  • [22] Data-Driven Adaptive Regularized Risk Forecasting
    Liang, You
    Thavaneswaran, Aerambamoorthy
    Zhu, Zimo
    Thulasiram, Ruppa K.
    Hoque, Md Erfanul
    [J]. 2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1296 - 1301
  • [23] Data-Driven Forecasting of Agitation for Persons with Dementia: A Deep Learning-Based Approach
    HekmatiAthar S.P.
    Goins H.
    Samuel R.
    Byfield G.
    Anwar M.
    [J]. SN Computer Science, 2021, 2 (4)
  • [24] Long-term stability and generalization of observationally-constrained stochastic data-driven models for geophysical turbulence
    Chattopadhyay, Ashesh
    Pathak, Jaideep
    Nabizadeh, Ebrahim
    Bhimji, Wahid
    Hassanzadeh, Pedram
    [J]. ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [25] Data-driven deep density estimation
    Puchert, Patrik
    Hermosilla, Pedro
    Ritschel, Tobias
    Ropinski, Timo
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16773 - 16807
  • [26] Data-driven deep density estimation
    Patrik Puchert
    Pedro Hermosilla
    Tobias Ritschel
    Timo Ropinski
    [J]. Neural Computing and Applications, 2021, 33 : 16773 - 16807
  • [27] A Data-Driven Solar Irradiance Forecasting Model with Minimum Data
    Lyu, Cheng
    Basumallik, Sagnik
    Eftekharnejad, Sara
    Xu, Chongfang
    [J]. 2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 307 - 312
  • [28] WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting
    Rasp, Stephan
    Dueben, Peter D.
    Scher, Sebastian
    Weyn, Jonathan A.
    Mouatadid, Soukayna
    Thuerey, Nils
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (11)
  • [29] A highly accurate strategy for data-driven turbulence modeling
    Brener, Bernardo P.
    Cruz, Matheus A.
    Macedo, Matheus S. S.
    Thompson, Roney L.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [30] Data-driven stochastic processes in fully developed turbulence
    Greiner, M
    Cleve, J
    Schmiegel, J
    Sreenivasan, KR
    [J]. Probability and Partial Differential Equations in Modern Applied Mathematics, 2005, 140 : 137 - 150