Vertical displacement oscillatory modes in tokamak plasmas

被引:8
|
作者
Barberis, T. [1 ]
Yolbarsop, A. [1 ,2 ,3 ]
Porcelli, F. [1 ]
机构
[1] Polytech Univ Turin, Dept Appl Sci & Technol, I-10129 Turin, Italy
[2] Univ Sci & Technol China, KTX Lab, Hefei 230022, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Engn & Appl Phys, Hefei 230022, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
fusion plasma; plasma instabilities; plasma waves; HIGH-BETA; STABILITY;
D O I
10.1017/S0022377822000988
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Vertical displacement normal modes in shaped tokamak plasmas are studied analytically, based on the reduced ideal-magnetohydrodynamic model. With the help of quadratic forms, and using the appropriate eigenfunction for vertical displacements with toroidal mode number n = 0 and dominant elliptical-angle mode number m = 1, a dispersion relation is derived, including the effects of ideal or resistive walls through a single parameter, D-w(gamma), which is, in general, a function of the complex eigenfrequency gamma = -i omega. For the resistive-wall case, the dispersion relation is cubic in gamma. One root corresponds to the well-known, non-rotating resistive-wall vertical mode, growing on the resistive-wall time scale. The other two roots are weakly damped by wall resistivity, but oscillate with a frequency below the poloidal Alfven frequency, which makes them immune to continuum damping, but subject to possible instability due to resonant interaction with fast ions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Low-frequency Alfven gap modes in rotating tokamak plasmas
    Haverkort, J. W.
    de Blank, H. J.
    Koren, B.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (04)
  • [42] Theoretical studies of low-frequency Alfven modes in tokamak plasmas
    Ma, Ruirui
    Chen, Liu
    Zonca, Fulvio
    Li, Yueyan
    Qiu, Zhiyong
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (03)
  • [43] Nonlinear dynamics of rotating drift-tearing modes in tokamak plasmas
    Nishimura, S.
    Benkadda, S.
    Yagi, M.
    Itoh, S. -I.
    Itoh, K.
    PHYSICS OF PLASMAS, 2008, 15 (09)
  • [44] The interaction between fishbone modes and shear Alfven waves in tokamak plasmas
    He, Hongda
    Liu, Yueqiang
    Dong, J. Q.
    Hao, G. Z.
    Wu, Tingting
    He, Zhixiong
    Zhao, K.
    NUCLEAR FUSION, 2016, 56 (05)
  • [45] Beam-driven energetic particle modes in advanced tokamak plasmas
    Heidbrink, WW
    Gorelenkov, NN
    Murakami, M
    NUCLEAR FUSION, 2002, 42 (08) : 972 - 976
  • [46] Saturation of Alfven modes in tokamak plasmas investigated by Hamiltonian mapping techniques
    Briguglio, S.
    Schneller, M.
    Wang, X.
    Di Troia, C.
    Hayward-Schneider, T.
    Fusco, V.
    Vlad, G.
    Fogaccia, G.
    NUCLEAR FUSION, 2017, 57 (07)
  • [47] Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas
    Shen, Yong
    Dong, J. Q.
    Sun, A. P.
    Qu, H. P.
    Lu, G. M.
    He, Z. X.
    He, H. D.
    Wang, L. F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
  • [48] Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field
    Zhou, Deng
    PHYSICS OF PLASMAS, 2015, 22 (09)
  • [49] Current losses induced by edge localized modes in JET tokamak plasmas
    Testa, D
    Bigi, M
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (06) : 733 - 744
  • [50] Geodesic acoustic modes and zonal flows in toroidally rotating tokamak plasmas
    Lakhin, V. P.
    Ilgisonis, V. I.
    Smolyakov, A. I.
    PHYSICS LETTERS A, 2010, 374 (48) : 4872 - 4875