Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries

被引:51
|
作者
Kang, Weimin [1 ]
Ma, Xiaomin [2 ]
Zhao, Huihui [2 ]
Ju, Jingge [2 ]
Zhao, Yixia [2 ]
Yan, Jing [3 ]
Cheng, Bowen [1 ]
机构
[1] Tianjin Polytech Univ, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China
[3] Chungnam Natl Univ, Dept Adv Organ Mat & Text Syst Engn, Daejeon 34134, South Korea
基金
中国国家自然科学基金;
关键词
Cellulose acetate; Poly(vinylidene fluoride); Electrospinning; Gelpolymer electrolyte; Lithium-ionbattery; GEL ELECTROLYTES; SURFACE MODIFICATION; PERFORMANCE; SEPARATOR; CONDUCTIVITY; FLUORIDE-CO-HEXAFLUOROPROPYLENE); METHACRYLATE); NETWORK;
D O I
10.1007/s10008-016-3271-y
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge-discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 A degrees C without tension), and ionic conductivity (2.61 x 10(-3) S cm(-1)). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g(-1), with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).
引用
收藏
页码:2791 / 2803
页数:13
相关论文
共 50 条
  • [41] Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries
    Zuo, Xiaoxi
    Ma, Xiangdong
    Wu, Jinhua
    Deng, Xiao
    Xiao, Xin
    Liu, Jiansheng
    Nan, Junmin
    ELECTROCHIMICA ACTA, 2018, 271 : 582 - 590
  • [42] A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries
    Appetecchi, GB
    Croce, F
    De Paolis, A
    Scrosati, B
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 463 (02) : 248 - 252
  • [43] Development of polydopamine coated electrospun PAN/PMMA nanofibrous membrane as composite separator for Lithium-ion batteries
    Zhang, Tianwei
    Qu, Hong
    Sun, Kuangzheng
    MATERIALS LETTERS, 2019, 245 : 10 - 13
  • [44] A high-performance gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/poly(propylene carbonate) for lithium-ion batteries
    Xu, Jianglan
    Liu, Yuewen
    Cao, Qi
    Jing, Bo
    Wang, Xianyou
    Tan, Li
    JOURNAL OF CHEMICAL SCIENCES, 2019, 131 (06)
  • [45] A high-performance gel polymer electrolyte based on poly(vinylidene fluoride)/thermoplastic polyurethane/poly(propylene carbonate) for lithium-ion batteries
    Jianglan Xu
    Yuewen Liu
    Qi Cao
    Bo Jing
    Xianyou Wang
    Li Tan
    Journal of Chemical Sciences, 2019, 131
  • [46] Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries
    Liang, Yinzheng
    Cheng, Sichen
    Zhao, Jianmeng
    Zhang, Changhuan
    Sun, Shiyuan
    Zhou, Nanting
    Qiu, Yiping
    Zhang, Xiangwu
    JOURNAL OF POWER SOURCES, 2013, 240 : 204 - 211
  • [47] Electrospun poly (vinylidene fluoride)/poly (methyl methacrylate) composite nanofibers polymer electrolyte for batteries
    Mahant, Yogita P.
    Kondawar, Subhash B.
    Bhute, Monali
    Nandanwar, D. V.
    2ND INTERNATIONAL CONFERENCE ON NANOMATERIALS AND TECHNOLOGIES (CNT 2014), 2015, 10 : 595 - 602
  • [48] Safer lithium-ion batteries realized by electrolyte with thermoresponsive poly(vinylidene fluoride-co-trifluoroethylene)
    Song, Chaeeun
    Kim, Seungwon
    Park, Sewon
    Park, Seon Yeong
    Lee, Jaewoong
    Woo, Myung-Heui
    Yu, Arum Amy
    Kim, Jihan
    Choi, Nam-Soon
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [49] Electrospun polyimide/cellulose acetate propionate nanofiber membrane-based gel polymer electrolyte with fast lithium-ion transport and high interface stability for lithium metal batteries
    Gao, Chao
    Li, Xinping
    Song, Changyong
    Wei, Guijuan
    Zhao, Xixia
    Wang, Shoujuan
    Kong, Fangong
    CELLULOSE, 2023, 30 (14) : 9113 - 9126
  • [50] Electrospun polyimide/cellulose acetate propionate nanofiber membrane-based gel polymer electrolyte with fast lithium-ion transport and high interface stability for lithium metal batteries
    Chao Gao
    Xinping Li
    Changyong Song
    Guijuan Wei
    Xixia Zhao
    Shoujuan Wang
    Fangong Kong
    Cellulose, 2023, 30 : 9113 - 9126