Numerical ranges of weighted shift matrices with periodic weights

被引:11
|
作者
Tsai, Ming Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Weighted shift matrix; Periodic weights; Degree-n homogeneous polynomial; Reducible matrix;
D O I
10.1016/j.laa.2011.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n-by-n (n >= 2) matrix of the form [0 a(1) 0 a(n-1) a(n) 0] We show that if the a(j)'s are nonzero and their moduli are periodic, then the boundary of its numerical range contains a line segment. We also prove that partial derivative W (A) contains a noncircular elliptic arc if and only if the a(j)'s are nonzero, n is even, vertical bar a(1)vertical bar = vertical bar a(3)vertical bar = ... = vertical bar a(n-1)vertical bar, vertical bar a(2)vertical bar = vertical bar a(4)vertical bar = ... = vertical bar a(n)vertical bar and vertical bar a(1)vertical bar not equal vertical bar a(2)vertical bar. Finally, we give a criterion for A to be reducible and completely characterize the numerical ranges of such matrices. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2296 / 2302
页数:7
相关论文
共 50 条
  • [21] Numerical ranges of KMS matrices
    Hwa-Long Gau
    Pei Yuan Wu
    Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 583 - 610
  • [22] Numerical ranges of KMS matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (3-4): : 583 - 610
  • [23] Numerical ranges of companion matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) : 202 - 218
  • [24] Numerical ranges of Hankel matrices
    Gau, Hwa-Long
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 60 - 74
  • [25] Numerical ranges of weighted shifts
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 897 - 909
  • [26] On the boundary of weighted numerical ranges
    Cheung, Wai-Shun
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01): : 78 - 86
  • [27] The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices
    Itza-Ortiz, Benjamin A.
    Martinez-Avendano, Ruben A.
    Nakazato, Hiroshi
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15): : 2830 - 2849
  • [28] The q-numerical range of 3-by-3 weighted shift matrices
    Chien, Mao-Ting
    Nakazato, Hiroshi
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1199 - 1203
  • [29] Numerical ranges of row stochastic matrices
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 478 - 505
  • [30] On the numerical ranges of matrices in max algebra
    Thaghizadeh, D.
    Zahraei, M.
    Peperko, A.
    Aboutalebi, N. Haj
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (04) : 1773 - 1792