Numerical ranges of weighted shift matrices with periodic weights

被引:11
|
作者
Tsai, Ming Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Weighted shift matrix; Periodic weights; Degree-n homogeneous polynomial; Reducible matrix;
D O I
10.1016/j.laa.2011.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n-by-n (n >= 2) matrix of the form [0 a(1) 0 a(n-1) a(n) 0] We show that if the a(j)'s are nonzero and their moduli are periodic, then the boundary of its numerical range contains a line segment. We also prove that partial derivative W (A) contains a noncircular elliptic arc if and only if the a(j)'s are nonzero, n is even, vertical bar a(1)vertical bar = vertical bar a(3)vertical bar = ... = vertical bar a(n-1)vertical bar, vertical bar a(2)vertical bar = vertical bar a(4)vertical bar = ... = vertical bar a(n)vertical bar and vertical bar a(1)vertical bar not equal vertical bar a(2)vertical bar. Finally, we give a criterion for A to be reducible and completely characterize the numerical ranges of such matrices. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2296 / 2302
页数:7
相关论文
共 50 条
  • [1] Numerical ranges of weighted shift matrices
    Tsai, Ming Cheng
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 243 - 254
  • [2] Diagonals and numerical ranges of weighted shift matrices
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 514 - 532
  • [3] Refinements for numerical ranges of weighted shift matrices
    Tsai, Ming-Cheng
    Gau, Hwa-Long
    Wang, Han-Chun
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05): : 568 - 578
  • [4] NUMERICAL RANGE OF A WEIGHTED SHIFT WITH PERIODIC WEIGHTS
    RIDGE, WC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 55 (01) : 107 - 110
  • [5] ON THE NUMERICAL RANGES OF THE WEIGHTED SHIFT OPERATORS WITH GEOMETRIC AND HARMONIC WEIGHTS
    Vandanjav, Adiyasuren
    Undrakh, Batzorig
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 578 - 585
  • [6] Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges
    Gau, Hwa-Long
    Tsai, Ming-Cheng
    Wang, Han-Chun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 498 - 513
  • [7] The q-numerical radius of weighted shift operators with periodic weights
    Chien, Mao-Ting
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 198 - 218
  • [8] Numerical ranges of cyclic shift matrices
    Chien, Mao-Ting
    Kirkland, Steve
    Li, Chi-Kwong
    Nakazato, Hiroshi
    arXiv, 2023,
  • [9] Numerical ranges of cyclic shift matrices
    Chien, Mao-Ting
    Kirkland, Steve
    Li, Chi-Kwong
    Nakazato, Hiroshi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 678 : 268 - 294
  • [10] Proof of a conjecture on numerical ranges of weighted cyclic matrices
    Gau, Hwa-Long
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 295 - 308