In vivo comprehensive multiphase NMR

被引:16
|
作者
Mobarhan, Yalda Liaghati [1 ]
Soong, Ronald [1 ]
Lane, Daniel [1 ]
Simpson, Andre J. [1 ]
机构
[1] Univ Toronto, Environm NMR Ctr, Dept Phys & Environm Sci, 1265 Mil Trail, Scarborough, ON M1C 1A4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Comprehensive Multiphase NMR; In-vivo; environmental organisms; Daphnia magna; Hyalella azteca; magic angle spinning; metabolomics; MAGNETIC-RESONANCE-SPECTROSCOPY; SOIL ORGANIC-MATTER; SOLUTION-STATE NMR; HR-MAS NMR; HIGH-RESOLUTION; PERFLUOROOCTANOIC ACID; H-1-NMR SPECTROSCOPY; SHELL DISEASE; DAPHNIA-MAGNA; WATER;
D O I
10.1002/mrc.4832
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditionally, due to different hardware requirements, nuclear magnetic resonance (NMR) has developed as two separate fields: one dealing with solids, and one with solutions. Comprehensive multiphase (CMP) NMR combines all electronics and hardware (magic angle spinning [MAS], gradients, high power Radio Frequency (RF) handling, lock, susceptibility matching) into a universal probe that permits a comprehensive study of all phases (i.e., liquid, gel-like, semisolid, and solid), in intact samples. When applied in vivo, it provides unique insight into the wide array of bonds in a living system from the most mobile liquids (blood, fluids) through gels (muscle, tissues) to the most rigid (exoskeleton, shell). In this tutorial, the practical aspects of in vivo CMP NMR are discussed including: handling the organisms, rotor preparation, sample spinning, water suppression, editing experiments, and finishes with a brief look at the potential of other heteronuclei (H-2, N-15, F-19, P-31) for in vivo research. The tutorial is aimed as a general resource for researchers interested in developing and applying MAS-based approaches to living organisms. Although the focus here is CMP NMR, many of the approaches can be adapted (or directly applied) using conventional high-resolution magic angle spinning, and in some cases, even standard solid-state NMR probes.
引用
收藏
页码:427 / 444
页数:18
相关论文
共 50 条
  • [31] NMR probeheads for in vivo applications
    Haase, A
    Odoj, F
    Von Kienlin, M
    Warnking, J
    Fidler, F
    Weisser, A
    Nittka, M
    Rommel, E
    Lanz, T
    Kalusche, B
    Griswold, M
    CONCEPTS IN MAGNETIC RESONANCE, 2000, 12 (06): : 361 - 388
  • [32] Introduction into in vivo NMR spectroscopy
    Künnecke, B
    Seelig, J
    MAGNETIC RESONANCE AND BRAIN FUNCTION: APPROACHES FROM PHYSICS, 1999, 139 : 1 - 13
  • [33] Bone marrow NMR in vivo
    Schick, F
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1996, 29 : 169 - 227
  • [34] Continuous in vivo Metabolism by NMR
    Judge, Michael T.
    Wu, Yue
    Tayyari, Fariba
    Haffori, Ayuna
    Glushka, John
    Ito, Takahiro
    Arnold, Jonathan
    Edison, Arthur S.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2019, 6
  • [35] 体内(in Vivo)NMR研究
    张卫国
    波谱学杂志, 1988, (04) : 417 - 426
  • [36] IN-VIVO NMR OF DRUGS
    KOMOROSKI, RA
    ANALYTICAL CHEMISTRY, 1994, 66 (20) : A1024 - A1033
  • [37] Tissue NMR Ex Vivo
    Smith, Ian C. P.
    Bezabeh, Tedros
    eMagRes, 2007, 2007
  • [38] Bone marrow NMR in vivo
    Abt. für Radiol. Diagnostik, Physikalisches Institut, Universität Tübingen, 72076 Tübingen, Germany
    Prog. Nucl. Magn. Reson. Spectrosc., 3-4 (169-227):
  • [39] A comprehensive review study on multiphase analysis of water entry bodies
    Prasad, B. Sairam
    Sastry, G. Ravi Kiran
    Das, H. N.
    OCEAN ENGINEERING, 2024, 292
  • [40] Comprehensive NMR Study of Magnesium Borohydride
    Shane, David T.
    Rayhel, Laura H.
    Huang, Zhenguo
    Zhao, Ji-Cheng
    Tang, Xia
    Stavila, Vitalie
    Conradi, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (07): : 3172 - 3177