Microstructure and electrochemical performances of LiF-coated spinel LiMn2O4

被引:0
|
作者
Bai Ying [1 ,2 ]
Wu Chuan [1 ,2 ]
Wu Feng [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing 100081, Peoples R China
[2] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China
关键词
spinel LiMn2O4; secondary lithium batteries; surface modification; LiF-coating;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
LiF-coated LiMn2O4 samples were prepared via a chemical method. X-ray diffraction (XRD) patterns show that the bare LiMn2O4 and the LiF-coated LiMn2O4 samples are all spinel structure in Fd (3) over barm space group. The apparent morphologies, the spectroscopic properties and the LiF distributions of the as-prepared samples were studied by scanning electronic microscopy (SEM), Fourier infrared spectroscopy (FTIR), transmission electronic microscopy (TEM), selected area electron diffractometry (SAED) respectively. The LiF-coated LiMn2O4 gets a more stable surface than bare LiMn2O4, and changes the interaction between the cathode material and the electrolyte. Therefore, it can endure overcharge in the secondary lithium batteries, and achieve better electrochemical performances even when charged to 4.7 V and 4.9 V.
引用
收藏
页码:S892 / S896
页数:5
相关论文
共 50 条
  • [31] Preliminary studies of biominerals-coated spinel LiMn2O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries
    Vediappan, Kumaran
    Lee, Chang Woo
    PHYSICA SCRIPTA, 2010, T139
  • [32] Influence of Co-substitution on Structure and Electrochemical Performances of Li-rich Spinel LiMn2O4
    Wu, Hao
    Liu, Wenjing
    Ma, Guangqiang
    Huang, Sisi
    Wang, Fu
    Ding, Li
    Zhang, Yun
    INTEGRATED FERROELECTRICS, 2015, 164 (01) : 23 - 32
  • [33] LiMn2O4 spinel and substituted cathodes
    Thackeray, Michael M.
    Amine, Khalil
    NATURE ENERGY, 2021, 6 (05) : 566 - 566
  • [34] LiMn2O4 spinel and substituted cathodes
    Michael M. Thackeray
    Khalil Amine
    Nature Energy, 2021, 6 : 566 - 566
  • [35] Structural and Electrochemical Analyses on the Transformation of CaFe2O4-Type LiMn2O4 from Spinel-Type LiMn2O4
    Mukai, Kazuhiko
    Uyama, Takeshi
    Yamada, Ikuya
    ACS OMEGA, 2019, 4 (04): : 6459 - 6467
  • [36] Synthesis and character of spinel LiMn2O4
    徐茶清
    田彦文
    翟玉春
    于冰
    郭兆靖
    Transactions of Nonferrous Metals Society of China, 2004, (03) : 470 - 474
  • [37] Study on modification of spinel LiMn2O4
    Han, JD
    Jin, S
    Jing, Y
    Li, W
    Jia, YZ
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2005, 21 (02) : 237 - 240
  • [38] A Raman study of spinel LiMn2O4
    Wang, CZ
    Gong, J
    Liu, W
    Wei, YJ
    Wu, F
    Chen, G
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2003, 19 (03) : 344 - 346
  • [39] A Raman Study of Spinel LiMn2O4
    WANG Chun-zhong 1
    2. Institute of Condensed Matter Physics
    3. Beijing Institute of Technology
    Chemical Research in Chinese Universities, 2003, (03) : 344 - 346
  • [40] Synthesis and character of spinel LiMn2O4
    Xu, CQ
    Tian, YW
    Zhai, YC
    Yu, B
    Guo, ZJ
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2004, 14 (03) : 470 - 474