Generalized Almansi Expansions in Superspace

被引:0
|
作者
Yuan, Hongfen [1 ]
机构
[1] Hebei Univ Engn, Coll Sci, Handan 056038, Peoples R China
基金
中国国家自然科学基金;
关键词
Superspace; Polynomial Dirac operator; Almansi expansion; Riquier problem;
D O I
10.1007/s40315-015-0153-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first study an expansion for the operators (partial derivative(x) - lambda)(k), where partial derivative(x) is the Dirac operator in superspace and lambda is a complex number. Then we investigate expansions for polynomial Dirac operators in superspace. These expansions are regarded as generalized Almansi expansions in superspace. As an application of the expansions, the modified Riquier problem in superspace is considered.
引用
收藏
页码:515 / 527
页数:13
相关论文
共 50 条
  • [31] SOME EXPANSIONS OF GENERALIZED WHITTAKER FUNCTIONS
    SRIVASTAVA, HM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 61 : 895 - +
  • [32] On product expansions of generalized modular forms
    Kohnen, Winfried
    Martin, Yves
    RAMANUJAN JOURNAL, 2008, 15 (01): : 103 - 107
  • [33] ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
    Ernst, Oliver G.
    Mugler, Antje
    Starkloff, Hans-Joerg
    Ullmann, Elisabeth
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2012, 46 (02) : 317 - 339
  • [34] Generalized Cornish-Fisher expansions
    Christopher S. Withers
    Saralees Nadarajah
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 213 - 242
  • [35] GENERALIZED WILSON EXPANSIONS IN DIMENSIONAL RENORMALIZATION
    COLLECOTT, PS
    ANNALS OF PHYSICS, 1978, 113 (02) : 461 - 480
  • [36] Generalized continued fraction expansions for π and e
    Kadyrov, Shirali
    Mashurov, Farukh
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (06): : 1809 - 1819
  • [37] EXPANSIONS IN GENERALIZED EIGENFUNCTIONS OF SELFADJOINT OPERATORS
    POERSCHKE, T
    STOLZ, G
    WEIDMANN, J
    MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (03) : 397 - 408
  • [38] EXPANSIONS OF GENERALIZED COMPLETELY CONVEX FUNCTIONS
    AMIR, D
    ZIEGLER, Z
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (03) : 643 - 654
  • [39] GENERALIZED TAYLOR EXPANSIONS OF SINGULAR FUNCTIONS
    LYSIK, G
    STUDIA MATHEMATICA, 1991, 99 (03) : 235 - 262
  • [40] ON GENERALIZED SAMPLING EXPANSIONS FOR DETERMINISTIC SIGNALS
    FIGUEIRASVIDAL, AR
    MARINOACEBAL, JB
    GOMEZ, RG
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1981, 28 (02): : 153 - 154