A hybrid multi-objective tour route optimization algorithm based on particle swarm optimization and artificial bee colony optimization

被引:22
|
作者
Beed, Romit [1 ]
Roy, Arindam [2 ]
Sarkar, Sunita [3 ]
Bhattacharya, Durba [4 ]
机构
[1] St Xaviers Coll, Dept Comp Sci, Kolkata, W Bengal, India
[2] Assam Univ, Dept Comp Sci, Silchar, Assam, India
[3] Assam Univ, Dept Comp Sci & Engn, Silchar, Assam, India
[4] St Xaviers Coll, Dept Stat, Kolkata, W Bengal, India
关键词
artificial bee colony optimization; multi-objective optimization; particle swarm optimization; route optimization; weighted sum; GENETIC ALGORITHM;
D O I
10.1111/coin.12276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computational intelligence techniques have widespread applications in the field of engineering process optimization, which typically comprises of multiple conflicting objectives. An efficient hybrid algorithm for solving multi-objective optimization, based on particle swarm optimization (PSO) and artificial bee colony optimization (ABCO) has been proposed in this paper. The novelty of this algorithm lies in allocating random initial solutions to the scout bees in the ABCO phase which are subsequently optimized in the PSO phase with respect to the velocity vector. The last phase involves loyalty decision-making for the uncommitted bees based on the waggle dance phase of ABCO. This procedure continues for multiple generations yielding optimum results. The algorithm is applied to a real life problem of intercity route optimization comprising of conflicting objectives like minimization of travel cost, maximization of the number of tourist spots visited and minimization of the deviation from desired tour duration. Solutions have been obtained using both pareto optimality and the classical weighted sum technique. The proposed algorithm, when compared analytically and graphically with the existing ABCO algorithm, has displayed consistently better performance for fitness values as well as for standard benchmark functions and performance metrics for convergence and coverage.
引用
收藏
页码:884 / 909
页数:26
相关论文
共 50 条
  • [31] A particle swarm algorithm for multi-objective optimization problem
    Institute of Information Engineering, Xiangtan University, Xiangtan 411105, China
    Moshi Shibie yu Rengong Zhineng, 2007, 5 (606-611):
  • [32] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [33] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [34] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [35] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    Swarm Intelligence, 2020, 14 : 83 - 116
  • [36] Multi-Objective Mean Particle Swarm Optimization Algorithm
    Pei, Shengyu
    Zhou, Yongquan
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3315 - 3319
  • [37] A simplified multi-objective particle swarm optimization algorithm
    Trivedi, Vibhu
    Varshney, Pushkar
    Ramteke, Manojkumar
    SWARM INTELLIGENCE, 2020, 14 (02) : 83 - 116
  • [38] Adaptive Multi-objective Particle Swarm Optimization algorithm
    Tripathi, P. K.
    Bandyopadhyay, Sanghamitra
    Pal, S. K.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2281 - +
  • [39] A Hybrid Algorithm Based on Particle Swarm Optimization and Ant Colony Optimization Algorithm
    Lu, Junliang
    Hu, Wei
    Wang, Yonghao
    Li, Lin
    Ke, Peng
    Zhang, Kai
    SMART COMPUTING AND COMMUNICATION, SMARTCOM 2016, 2017, 10135 : 22 - 31
  • [40] Hybrid Butterfly Optimization and Particle Swarm Optimization Algorithm-Based Constrained Multi-Objective Nonlinear Planetary Gearbox Optimization
    Sedak, Milos
    Rosic, Maja
    APPLIED SCIENCES-BASEL, 2023, 13 (21):