Robust optimization in Support Vector Machine training with bounded errors

被引:0
|
作者
Trafalis, TB [1 ]
Alwazzi, SA [1 ]
机构
[1] Univ Oklahoma, Sch Ind Engn, Lab Optimizat & Intelligent Syst, Norman, OK 73019 USA
关键词
robust optimization; kernel methods; support vector machines; semidefinite programming;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the stability of the linear programming Support Vector Machine (LP-SVM) solution under bounded perturbations of the input data using a robust optimization model. Preliminary experimental results are presented for toy and real world data.
引用
收藏
页码:2039 / 2042
页数:4
相关论文
共 50 条
  • [31] New approach to training support vector machine
    Tang Faming
    Journal of Systems Engineering and Electronics, 2006, (01) : 200 - 205
  • [32] Smooth twin bounded support vector machine with pinball loss
    Kai Li
    Zhen Lv
    Applied Intelligence, 2021, 51 : 5489 - 5505
  • [33] Twin Bounded Support Vector Machine with Capped Pinball Loss
    Wang, Huiru
    Hong, Xiaoqing
    Zhang, Siyuan
    COGNITIVE COMPUTATION, 2024, 16 (05) : 2185 - 2205
  • [34] Incremental and decremental fuzzy bounded twin support vector machine
    Mello, Alexandre R.
    Stemmer, Marcelo R.
    Koerich, Alessandro L.
    INFORMATION SCIENCES, 2020, 526 : 20 - 38
  • [35] Smooth twin bounded support vector machine with pinball loss
    Li, Kai
    Lv, Zhen
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5489 - 5505
  • [36] Recursive training methods for robust classification: A sequential analytic centering approach to the support vector machine
    Comanor, K
    Vandenberghe, L
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIII, 2003, 5205 : 209 - 218
  • [37] Robust Multi-Weight Vector Projection Support Vector Machine
    Zhao, Heng-hao
    Ye, Qiao-lin
    2017 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM), 2017, : 332 - 337
  • [38] Unsupervised optimization of support vector machine parameters
    Cassabaum, M
    Waagen, D
    Rodríguez, JJ
    Schmitt, H
    AUTOMATIC TARGET RECOGNITION XIV, 2004, 5426 : 316 - 325
  • [39] A robust formulation for twin multiclass support vector machine
    Lopez, Julio
    Maldonado, Sebastian
    Carrasco, Miguel
    APPLIED INTELLIGENCE, 2017, 47 (04) : 1031 - 1043
  • [40] DC Algorithm for Extended Robust Support Vector Machine
    Fujiwara, Shuhei
    Takeda, Akiko
    Kanamori, Takafumi
    NEURAL COMPUTATION, 2017, 29 (05) : 1406 - 1438