Nanocrystal fluorescence in photonic bandgap microcavities and plasmonic nanoantennas

被引:1
|
作者
Lukishova, Svetlana G. [1 ]
Winkler, Justin M. [2 ]
Mihaylova, Dilyana [1 ]
Liapis, Andreas [3 ]
Bissell, Luke J. [4 ]
Goldberg, David [5 ]
Menon, Vinod M. [5 ]
Shi, Zhimin [6 ]
Boyd, Robert W. [1 ,2 ,7 ,8 ]
Chen, Guanuing [9 ,10 ]
Prasad, Paras [9 ,10 ]
机构
[1] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Brookhaven Natl Lab, Upton, NY 11973 USA
[4] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA
[5] CUNY, Dept Phys, New York, NY 10031 USA
[6] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[7] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[8] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[9] SUNY Buffalo, Inst Lasers Photon & Biophoton, Buffalo, NY 14260 USA
[10] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
关键词
DYE MOLECULE FLUORESCENCE; LIQUID-CRYSTALS; SINGLE;
D O I
10.1088/1742-6596/594/1/012005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Results are presented here towards robust room-temperature single-photon sources based on fluorescence in nanocrystals: colloidal quantum dots, color-center diamonds and doped with trivalent rare-earth ions (TR3+). We used cholesteric chiral photonic bandgap and Bragg-reflector microcavities for single emitter fluorescence enhancement. We also developed plasmonic bowtie nanoantennas and 2D-Si-photonic bandgap microcavities.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The role of the thermal oxide in GaAs-based photonic bandgap waveguide microcavities
    Lim, KY
    Ripin, DJ
    Petrich, GS
    Villeneuve, PR
    Fan, SH
    Joannopoulos, JD
    Ippen, EP
    Kolodziejski, LA
    ADVANCED MATERIALS, 1999, 11 (06) : 501 - +
  • [32] All-optical tunable photonic bandgap microcavities with a femtosecond time response
    Hu, Xiaoyong
    Jiang, Ping
    Yang, Hong
    Gong, Qihuang
    OPTICS LETTERS, 2006, 31 (18) : 2777 - 2779
  • [33] Coupled Plasmonic Nanoantennas
    Wang, Hancong
    INTELLIGENT DATA ANALYSIS AND APPLICATIONS, (ECC 2016), 2017, 535 : 257 - 265
  • [34] Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing
    Trevino, J.
    Walsh, G. F.
    Pecora, E. F.
    Boriskina, S. V.
    Dal Negro, L.
    OPTICS LETTERS, 2013, 38 (22) : 4861 - 4863
  • [35] Aluminum Plasmonic Nanoantennas
    Knight, Mark W.
    Liu, Lifei
    Wang, Yumin
    Brown, Lisa
    Mukherjee, Shaunak
    King, Nicholas S.
    Everitt, Henry O.
    Nordlander, Peter
    Halas, Naomi J.
    NANO LETTERS, 2012, 12 (11) : 6000 - 6004
  • [36] Improving Plasmonic Nanoantennas
    Chen, Kuo-Ping
    Drachev, Vladimir P.
    Borneman, Josh
    Kildishev, Alexander V.
    Shalaev, Vladimir M.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [37] Quantum plasmonic nanoantennas
    Fitzgerald, Jamie M.
    Azadi, Sam
    Giannini, Vincenzo
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [38] Saturation Behaviour of PbSe Nanocrystal Exciton Emission Coupled to Silicon Photonic Crystal Microcavities
    Qiao, Haijun
    Foell, Charles
    Abel, Keith A.
    Hughes, Stephen
    van Veggel, Frank C. J. M.
    Young, Jeff F.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [39] Enhancement of Optical Second Harmonic Generation in Hybrid Plasmonic-Photonic Microcavities
    Novikov, V. B.
    Nasonov, A. A.
    Maydykovskiy, A. I.
    Murzina, T. V.
    JETP LETTERS, 2018, 108 (05) : 296 - 301
  • [40] Near-infrared microcavities confined by two-dimensional photonic bandgap crystals
    Smith, CJM
    Benisty, H
    Labilloy, D
    Oesterle, U
    Houdré, R
    Krauss, TF
    De la Rue, RM
    Weisbuch, C
    ELECTRONICS LETTERS, 1999, 35 (03) : 228 - 230