Composition and source apportionment of fine particulate matter during extended calm periods in the city of Rijeka, Croatia

被引:3
|
作者
Ivosevic, T. [1 ]
Orlic, I. [2 ]
Radovic, I. Bogdanovic [3 ]
Cargonja, M. [2 ]
Stelcer, E. [4 ]
机构
[1] Educ & Teacher Training Agcy, Trpimirova 6, HR-51000 Rijeka, Croatia
[2] Univ Rijeka, Dept Phys, Radmile Matejcic 2, HR-51000 Rijeka, Croatia
[3] Rudjer Boskovic Inst, Lab Ion Beam Interact, Bijenicka 54, HR-10000 Zagreb, Croatia
[4] Australian Nucl Sci & Technol Org, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
关键词
PM2.5; IBA; LIPM; Positive matrix factorization; Air pollution sources; LONG-TERM; AIR-POLLUTION; IDENTIFICATION; EMISSIONS; TRANSPORT; PIXE;
D O I
10.1016/j.nimb.2017.02.084
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaign was recently completed. During that period, 345 samples of fine fraction of aerosols were collected on stretched Teflon filters. All samples were analyzed by Ion Beam Analysis techniques Proton Induced X-ray Emission and Proton Induced gamma-Ray Emission and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where the city of Rijeka is located, long periods of calm weather are common. As a consequence, during these periods, air pollution is steadily increasing. To pin-point and characterize local, mostly anthropogenic, air pollution sources, only samples collected during the extended calm periods were used in this work. As a cut-off wind speed, speed of 1.5 m/s was used. In that way, out of all 345 samples, only 188 were selected. Those samples were statistically evaluated by means of positive matrix factorization. Results show that from all anthropogenic sources (vehicles, secondary sulphates, smoke, heavy oil combustion, road dust, industry Fe and port activities) only secondary sulphates and heavy oil combustion were significantly higher (40% and 50%, respectively) during calm periods. On the other hand, natural components of aerosol pollution such as soil and sea salts, (typically present in concentrations of 1.4% and 9%, respectively) are practically non-existent for calm weather conditions. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 86
页数:5
相关论文
共 50 条
  • [31] Measurements of Indoor and Outdoor Fine Particulate Matter during the Heating Period in Jinan, in North China: Chemical Composition, Health Risk, and Source Apportionment
    Gao, Xiaomei
    Gao, Weidong
    Sun, Xiaoyan
    Jiang, Wei
    Wang, Ziyi
    Li, Wenshuai
    ATMOSPHERE, 2020, 11 (09)
  • [32] Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data
    Pancras, Joseph Patrick
    Landis, Matthew S.
    Norris, Gary A.
    Vedantham, Ram
    Dvonch, J. Timothy
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 448 : 2 - 13
  • [33] Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers
    Fraser, MP
    Yue, ZW
    Buzcu, B
    ATMOSPHERIC ENVIRONMENT, 2003, 37 (15) : 2117 - 2123
  • [34] Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks
    Ji, Wenjing
    Zhao, Kaijia
    Liu, Chenghao
    Li, Xiaofeng
    ENVIRONMENTAL POLLUTION, 2022, 305
  • [35] Pollution Characteristics and Source Apportionment of Fine Particulate Matter in Autumn and Winter in Puyang, China
    Chen C.
    Wang T.-J.
    Li Y.-H.
    Ma H.-L.
    Chen P.-L.
    Wang D.-Y.
    Zhang Y.-X.
    Qiao Q.
    Li G.-M.
    Wang W.-H.
    Huanjing Kexue/Environmental Science, 2019, 40 (08): : 3421 - 3430
  • [36] Multi-criteria ranking and source apportionment of fine particulate matter in Brisbane, Australia
    Friend, Adrian J.
    Ayoko, Godwin A.
    ENVIRONMENTAL CHEMISTRY, 2009, 6 (05) : 398 - 406
  • [37] Research status and prospects on source apportionment of atmospheric fine particulate matter in Shandong Province
    Zhou, Rui-Zhi
    Yan, Cai-Qing
    Cui, Min
    Xu, Min
    Liu, Wei-Jian
    Chen, Hai-Biao
    Zhou, Tao-Meizi
    Zheng, Mei
    Zhongguo Huanjing Kexue/China Environmental Science, 2021, 41 (07): : 3029 - 3042
  • [38] Spatial characteristics of fine particulate matter in subway stations: Source apportionment and health risks
    Ji, Wenjing
    Zhao, Kaijia
    Liu, Chenghao
    Li, Xiaofeng
    Environmental Pollution, 2022, 305
  • [39] Source Apportionment of Fine and Coarse Particulate Matter in Industrial Areas of Kaduna, Northern Nigeria
    Orogade, Sunday A.
    Owoade, Kayode O.
    Hopke, Philip K.
    Adie, Donatus B.
    Ismail, Abubakar
    Okuofu, Charles A.
    AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (05) : 1179 - 1190
  • [40] Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis
    Balachandran, Sivaraman
    Pachon, Jorge E.
    Hu, Yongtao
    Lee, Dongho
    Mulholland, James A.
    Russell, Armistead G.
    ATMOSPHERIC ENVIRONMENT, 2012, 61 : 387 - 394