Bayesian hierarchical modeling of drug stability data

被引:11
|
作者
Chen, Jie [1 ]
Zhong, Jinglin [2 ]
Nie, Lei [2 ]
机构
[1] Merck Res Labs, N Wales, PA 19454 USA
[2] US FDA, Div Biometr, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
关键词
Bayesian hierarchical model; drug stability; shelf-life;
D O I
10.1002/sim.3220
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stability data are commonly analyzed using linear fixed or random effect model. The linear fixed effect model does not take into account the batch-to-batch variation, whereas the random effect model may suffer from the unreliable shelf-life estimates due to small sample size. Moreover, both methods do not utilize any prior information that might have been available. In this article, we propose a Bayesian hierarchical approach to modeling drug stability data. Under this hierarchical structure, we first use Bayes factor to test the poolability of batches. Given the decision on poolability of batches, we then estimate the shelf-life that applies to all batches. The approach is illustrated with two example data sets and its performance is compared in simulation studies with that of the commonly used frequentist methods. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:2361 / 2380
页数:20
相关论文
共 50 条
  • [1] Bayesian hierarchical modeling on covariance valued data
    Acharyya, Satwik
    Zhang, Zhengwu
    Bhattacharya, Anirban
    Pati, Debdeep
    [J]. STAT, 2023, 12 (01):
  • [2] A Bayesian hierarchical framework for spatial modeling of fMRI data
    Bowman, F. DuBois
    Caffo, Brian
    Bassett, Susan Spear
    Kilts, Clinton
    [J]. NEUROIMAGE, 2008, 39 (01) : 146 - 156
  • [3] Bayesian Hierarchical Space–time Modeling of Earthquake Data
    Bent Natvig
    Ingunn Fride Tvete
    [J]. Methodology and Computing in Applied Probability, 2007, 9 : 89 - 114
  • [4] Bayesian hierarchical space-time modeling of earthquake data
    Natvig, Bent
    Tvete, Ingunn Fride
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2007, 9 (01) : 89 - 114
  • [5] Hierarchical Bayesian Analyses for Modeling BOLD Time Series Data
    Molloy M.F.
    Bahg G.
    Li X.
    Steyvers M.
    Lu Z.-L.
    Turner B.M.
    [J]. Computational Brain & Behavior, 2018, 1 (2) : 184 - 213
  • [6] A Bayesian hierarchical framework for modeling brain connectivity for neuroimaging data
    Chen, Shuo
    Bowman, F. DuBois
    Mayberg, Helen S.
    [J]. BIOMETRICS, 2016, 72 (02) : 596 - 605
  • [7] BAYESIAN HIERARCHICAL MODELING FOR TEMPERATURE RECONSTRUCTION FROM GEOTHERMAL DATA
    Brynjarsdottir, Jenny
    Berliner, L. Mark
    [J]. ANNALS OF APPLIED STATISTICS, 2011, 5 (2B): : 1328 - 1359
  • [8] Hierarchical modeling of sequential behavioral data:: An empirical Bayesian approach
    Dagne, GA
    Howe, GW
    Brown, CH
    Muthén, BO
    [J]. PSYCHOLOGICAL METHODS, 2002, 7 (02) : 262 - 280
  • [9] Bayesian nonparametric hierarchical modeling
    Dunson, David B.
    [J]. BIOMETRICAL JOURNAL, 2009, 51 (02) : 273 - 284
  • [10] Applying Hierarchical Bayesian Modeling to Experimental Psychopathology Data: An Introduction and Tutorial
    Tso, Ivy F.
    Taylor, Stephan F.
    Johnson, Timothy D.
    [J]. JOURNAL OF ABNORMAL PSYCHOLOGY, 2021, 130 (08) : 923 - 936