BAYESIAN HIERARCHICAL MODELING FOR TEMPERATURE RECONSTRUCTION FROM GEOTHERMAL DATA

被引:9
|
作者
Brynjarsdottir, Jenny [1 ]
Berliner, L. Mark [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
来源
ANNALS OF APPLIED STATISTICS | 2011年 / 5卷 / 2B期
基金
美国国家科学基金会;
关键词
Boreholes; borrowing strength; heat equation; paleoclimate; physical-statistical modeling; climate proxies; sensitivity analyses; CLIMATE-CHANGE; HEAT-FLOW; BOREHOLE;
D O I
10.1214/10-AOAS452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a Bayesian hierarchical modeling approach to paleoclimate reconstruction using borehole temperature profiles. The approach relies on modeling heat conduction in solids via the heat equation with step function, surface boundary conditions. Our analysis includes model error and assumes that the boundary conditions are random processes. The formulation also enables separation of measurement error and model error. We apply the analysis to data from nine borehole temperature records from the San Rafael region in Utah. We produce ground surface temperature histories with uncertainty estimates for the past 400 years. We pay special attention to use of prior parameter models that illustrate borrowing strength in a combined analysis for all nine boreholes. In addition, we review selected sensitivity analyses.
引用
收藏
页码:1328 / 1359
页数:32
相关论文
共 50 条
  • [1] Bayesian approach with hierarchical Markov modeling for data fusion in image reconstruction applications
    Mohammad-Djafari, A
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, 2002, : 440 - 447
  • [2] Bayesian hierarchical modeling on covariance valued data
    Acharyya, Satwik
    Zhang, Zhengwu
    Bhattacharya, Anirban
    Pati, Debdeep
    [J]. STAT, 2023, 12 (01):
  • [3] Bayesian hierarchical modeling of drug stability data
    Chen, Jie
    Zhong, Jinglin
    Nie, Lei
    [J]. STATISTICS IN MEDICINE, 2008, 27 (13) : 2361 - 2380
  • [4] Bayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurements
    Terzi, Erol
    Cengiz, Mehmet Ali
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013
  • [5] BAYESIAN HIERARCHICAL MODELING AND ANALYSIS FOR ACTIGRAPH DATA FROM WEARABLE DEVICES
    Di Loro, Pierfrancesco Alaimo
    Mingione, Marco
    Lipsitt, Jonah
    Batteate, Christina M.
    Jerrett, Michael
    Banerjee, Sudipto
    [J]. ANNALS OF APPLIED STATISTICS, 2023, 17 (04): : 2865 - 2886
  • [6] A Bayesian hierarchical framework for spatial modeling of fMRI data
    Bowman, F. DuBois
    Caffo, Brian
    Bassett, Susan Spear
    Kilts, Clinton
    [J]. NEUROIMAGE, 2008, 39 (01) : 146 - 156
  • [7] Bayesian Hierarchical Space–time Modeling of Earthquake Data
    Bent Natvig
    Ingunn Fride Tvete
    [J]. Methodology and Computing in Applied Probability, 2007, 9 : 89 - 114
  • [8] Climate reconstruction in the Urals from geothermal data
    Golovanova, I. V.
    Sal'manova, R. Yu.
    Demezhko, D. Yu.
    [J]. RUSSIAN GEOLOGY AND GEOPHYSICS, 2012, 53 (12) : 1366 - 1373
  • [9] BAYESIAN HIERARCHICAL MODELING FOR SIGNALING PATHWAY INFERENCE FROM SINGLE CELL INTERVENTIONAL DATA
    Luo, Ruiyan
    Zhao, Hongyu
    [J]. ANNALS OF APPLIED STATISTICS, 2011, 5 (2A): : 725 - 745
  • [10] A Bayesian hierarchical modeling approach for analyzing observational data from marine ecological studies
    Qian, Song S.
    Craig, J. Kevin
    Baustian, Melissa M.
    Rabalais, Nancy N.
    [J]. MARINE POLLUTION BULLETIN, 2009, 58 (12) : 1916 - 1921