Effects of van der Waals interaction on current drag between quantum wells

被引:3
|
作者
Boström, M [1 ]
Sernelius, BE [1 ]
机构
[1] Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden
来源
PHYSICA SCRIPTA | 1999年 / T79卷
关键词
D O I
10.1238/Physica.Topical.079a00089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There are two different current drag effects between two closely spaced quantum wells; one is dissipative in origin and vanishes at zero temperature; one is due to the change in van der Waals interaction between the wells when the carriers drift relative each other and this effect survives at zero temperature. We concentrate on this second effect in the present work. We use two simplified model-dielectric-functions for a 2D electron gas in the calculation of the van der Waals interaction between the wells. With these functions the interaction is completely determined by the collective excitations; the single-particle continuum has no effect. The results obtained when using these two model-dielectric-functions bracket, and are quite close to, the result from the full calculation using the RPA dielectric function. This fact justifies our use of these model functions in the calculation of the current-drag effect. Since only collective excitations contribute in this treatment we avoid most of the computational complications introduced by the carrier drift.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 50 条
  • [1] Effects of van der Waals interaction on current drag between quantum wells
    Boström, M.
    Sernelius, Bo E.
    Physica Scripta T, 1999, 79 : 89 - 94
  • [2] Nanostructure van der Waals interaction between a quantum well and a quantum dot atom
    Horing, NJM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21): : 6567 - 6573
  • [3] Repulsive van der Waals interaction between a quantum particle and a conducting toroid
    Abrantes, P. P.
    Franca, Yuri
    da Rosa, F. S. S.
    Farina, C.
    de Melo e Souza, Reinaldo
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [4] Van der Waals Heteroepitaxy of GaSe and InSe, Quantum Wells, and Superlattices
    Claro, Marcel S.
    Martinez-Pastor, Juan P.
    Molina-Sanchez, Alejandro
    El Hajraoui, Khalil
    Grzonka, Justyna
    Adl, Hamid Pashaei
    Marron, David Fuertes
    Ferreira, Paulo J.
    Bondarchuk, Oleksandr
    Sadewasser, Sascha
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (13)
  • [5] The van der Waals interaction
    Holstein, BR
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (04) : 441 - 449
  • [6] Quantum magnetic field effects in atom-surface van der Waals interaction
    Horing, NJM
    PHYSICAL REVIEW A, 2004, 69 (03): : 032901 - 1
  • [7] Nano-imaging of intersubband transitions in van der Waals quantum wells
    Peter Schmidt
    Fabien Vialla
    Simone Latini
    Mathieu Massicotte
    Klaas-Jan Tielrooij
    Stefan Mastel
    Gabriele Navickaite
    Mark Danovich
    David A. Ruiz-Tijerina
    Celal Yelgel
    Vladimir Fal’ko
    Kristian S. Thygesen
    Rainer Hillenbrand
    Frank H. L. Koppens
    Nature Nanotechnology, 2018, 13 : 1035 - 1041
  • [8] Nano-imaging of intersubband transitions in van der Waals quantum wells
    Schmidt, Peter
    Vialla, Fabien
    Latini, Simone
    Massicotte, Mathieu
    Tielrooij, Klaas-Jan
    Mastel, Stefan
    Navickaite, Gabriele
    Danovich, Mark
    Ruiz-Tijerina, David A.
    Yelgel, Celal
    Fal'ko, Vladimir
    Thygesen, Kristian S.
    Hillenbrand, Rainer
    Koppens, Frank H. L.
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 1035 - 1041
  • [9] Ultra-thin van der Waals crystals as semiconductor quantum wells
    Zultak, Johanna
    Magorrian, Samuel J.
    Koperski, Maciej
    Garner, Alistair
    Hamer, Matthew J.
    Tovari, Endre
    Novoselov, Kostya S.
    Zhukov, Alexander A.
    Zou, Yichao
    Wilson, Neil R.
    Haigh, Sarah J.
    Kretinin, Andrey, V
    Fal'ko, Vladimir, I
    Gorbachev, Roman
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Ultra-thin van der Waals crystals as semiconductor quantum wells
    Johanna Zultak
    Samuel J. Magorrian
    Maciej Koperski
    Alistair Garner
    Matthew J. Hamer
    Endre Tóvári
    Kostya S. Novoselov
    Alexander A. Zhukov
    Yichao Zou
    Neil R. Wilson
    Sarah J. Haigh
    Andrey V. Kretinin
    Vladimir I. Fal’ko
    Roman Gorbachev
    Nature Communications, 11