p-Value simulation for affected sib pair multiple testing

被引:2
|
作者
Wu, XL [1 ]
Naiman, DQ [1 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
关键词
multiple testing; affected sibling pair test; linkage; Monte Carlo simulation;
D O I
10.1159/000086697
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A standard approach to calculation of critical values for affected sib pair multiple testing is based on: (a) fully informative markers, (b) Haldane map function assumptions leading to a Markov chain model for inheritance vectors, (c) central limit approximation to averages of sampled inheritance vectors leading to an Ornstein-Uhlenbeck process approximation, and (d) simple approximations to the maximum of such a process. Under these assumptions, assuming equispaced or close to equispaced markers, if the sample size is large, an approximation is available that is easy to calculate and performs well. However, for small sample sizes, a large number of markers, and for small p-values, there is good reason to be cautious about the use of the Gaussian approximation. We develop an algorithm for calculation of multiple testing p-values based on the standard Markov chain model, avoiding the use of Gaussian (large sample) approximation. We illustrate the use of this algorithm by demonstrating some inadequacies of the Gaussian approximation.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 50 条
  • [1] The P-value and the problem of multiple testing
    Walters, Eurof
    REPRODUCTIVE BIOMEDICINE ONLINE, 2016, 32 (04) : 348 - 349
  • [2] P-value calibration in multiple hypotheses testing
    Cabras, Stefano
    Eugenia Castellanos, Maria
    STATISTICS IN MEDICINE, 2017, 36 (18) : 2875 - 2886
  • [3] P-value calibration for multiple testing problems in genomics
    Ferguson, John P.
    Palejev, Dean
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2014, 13 (06) : 659 - 673
  • [4] A combined p-value test for multiple hypothesis testing
    Zhang, Shunpu
    Chen, Huann-Sheng
    Pfeiffer, Ruth M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (04) : 764 - 770
  • [5] Compound p-value statistics for multiple testing procedures
    Habiger, Joshua D.
    Pena, Edsel A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 126 : 153 - 166
  • [6] GENERALIZED p-VALUE APPROACH FOR MULTIPLE HYPOTHESIS TESTING IN MICROARRAY
    Punathumparambath, Bindu
    Meethal, Kannan Vadakkadath
    JP JOURNAL OF BIOSTATISTICS, 2020, 17 (02) : 443 - 451
  • [7] Efficient p-value estimation in massively multiple testing problems
    Shi, X. F.
    Kustra, R.
    Murdoch, D. J.
    Greenwood, C.
    Rangrej, J.
    GENETIC EPIDEMIOLOGY, 2007, 31 (05) : 455 - 456
  • [8] A LATENT p-VALUE IN TESTING BY BOOTSTRAP
    Singh, Kesar
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1232 - 1235
  • [9] The P-value and P-value function
    Kulldorff, H
    Graubard, B
    Velie, E
    EPIDEMIOLOGY, 1999, 10 (03) : 345 - 346
  • [10] Importance sampling method of correction for multiple testing in affected sib-pair linkage analysis
    Alison P Klein
    Ilija Kovac
    Alexa JM Sorant
    Agnes Baffoe-Bonnie
    Betty Q Doan
    Grace Ibay
    Erica Lockwood
    Diptasri Mandal
    Lekshmi Santhosh
    Karen Weissbecker
    Jessica Woo
    April Zambelli-Weiner
    Jie Zhang
    Daniel Q Naiman
    James Malley
    Joan E Bailey-Wilson
    BMC Genetics, 4