Bayesian Quickest Detection of Credit Card Fraud

被引:7
|
作者
Buonaguidi, Bruno [1 ,2 ]
Mira, Antonietta [2 ,3 ]
Bucheli, Herbert [4 ,5 ]
Vitanis, Viton [4 ]
机构
[1] Univ Cattolica Sacro Cuore, Dept Stat Sci, Rome, Italy
[2] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
[3] Univ Insubria, Dept Sci & High Technol, Varese, Italy
[4] Viseca Card Serv SA, Aduno Grp, Zurich, Switzerland
[5] Aarhus Univ, Dept Econ & Business Econ, Aarhus, Denmark
来源
BAYESIAN ANALYSIS | 2022年 / 17卷 / 01期
关键词
Bayesian model; credit card fraud detection; optimal stopping theory; POISSON DISORDER PROBLEM; EXPONENTIAL PENALTY; CHANGE-POINT; CLASSIFICATION;
D O I
10.1214/20-BA1254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses the risk of fraud in credit card transactions by developing a probabilistic model for the quickest detection of illegitimate purchases. Using optimal stopping theory, the goal is to determine the moment, known as disorder or fraud time, at which the continuously monitored process of a consumer's transactions exhibits a disorder due to fraud, in order to return the best trade-off between two sources of cost: on the one hand, the disorder time should be detected as soon as possible to counteract illegal activities and minimize the loss that banks, merchants and consumers suffer; on the other hand, the frequency of false alarms should be minimized to avoid generating adverse effects for cardholders and to limit the operational and process costs for the card issuers. The proposed approach allows us to score consumers' transactions and to determine, in a rigorous, personalized and optimal manner, the threshold with which scores are compared to establish whether a purchase is fraudulent.
引用
下载
收藏
页码:261 / 290
页数:30
相关论文
共 50 条
  • [31] A customized classification algorithm for credit card fraud detection
    de Sa, Alex G. C.
    Pereira, Adriano C. M.
    Pappa, Gisele L.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 72 : 21 - 29
  • [32] Transaction aggregation as a strategy for credit card fraud detection
    C. Whitrow
    D. J. Hand
    P. Juszczak
    D. Weston
    N. M. Adams
    Data Mining and Knowledge Discovery, 2009, 18 : 30 - 55
  • [33] Sequence classification for credit-card fraud detection
    Jurgovsky, Johannes
    Granitzer, Michael
    Ziegler, Konstantin
    Calabretto, Sylvie
    Portier, Pierre-Edouard
    He-Guelton, Liyun
    Caelen, Olivier
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 100 : 234 - 245
  • [34] Reliable Logistic Regression for Credit Card Fraud Detection
    Hmidy, Yassine
    Mabrouk, Mouna Ben
    International Journal of Advanced Computer Science and Applications, 2024, 15 (11) : 67 - 76
  • [35] Transfer Learning Strategies for Credit Card Fraud Detection
    Lebichot, Bertrand
    Verhelst, Theo
    Le Borgne, Yann-Ael
    He-Guelton, Liyun
    Oble, Frederic
    Bontempi, Gianluca
    IEEE ACCESS, 2021, 9 : 114754 - 114766
  • [36] Credit Card Fraud Detection Using XGBoost Algorithm
    Abdulghani, Ahmed Qasim
    Ucan, Osman Nuri
    Alheeti, Khattab M. Ali
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 487 - 492
  • [37] Credit Card Fraud Detection with Machine Learning Methods
    Goy, Gokhan
    Gezer, Cengiz
    Gungor, Vehbi Cagri
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 350 - 354
  • [38] Using Neural Network for Credit Card Fraud Detection
    Georgieva, Sevdalina
    Markova, Maya
    Pavlov, Velizar
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [39] Credit Card Fraud Detection in E-commerce
    Porwal, Utkarsh
    Mukund, Smruthi
    2019 18TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS/13TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (TRUSTCOM/BIGDATASE 2019), 2019, : 280 - 287
  • [40] Distributed data mining in credit card fraud detection
    Chan, Philip K.
    Fan, Wei
    Prodromidis, Andreas L.
    Stolfo, Salvatore J.
    IEEE Intelligent Systems and Their Applications, 14 (06): : 67 - 74