Chemical vapor deposition of TiN on a CoCrFeNi multi-principal element alloy substrate

被引:16
|
作者
Boor, Katalin [1 ]
Qiu, Ren [2 ]
Forslund, Axel [3 ]
Backe, Olof [2 ]
Larsson, Henrik [3 ]
Lindahl, Erik [4 ]
Halvarsson, Mats [2 ]
Boman, Mats [1 ]
von Fieandt, Linus [4 ]
机构
[1] Uppsala Univ, Dept Chem, SE-5120 Uppsala, Sweden
[2] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[3] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[4] AB Sandvik Coromant, SE-12679 Hagersten, Sweden
来源
SURFACE & COATINGS TECHNOLOGY | 2020年 / 393卷 / 393期
关键词
Chemical vapor deposition; Transmission electron microscopy; X-ray diffraction; Calphad; Titanium nitride; Multi-principal element alloy; HIGH-ENTROPY ALLOYS; TITANIUM NITRIDE FILMS; MICROSTRUCTURE; TEMPERATURE; STABILITY; MECHANISM; EVOLUTION; HARDNESS; GROWTH; CVD;
D O I
10.1016/j.surfcoat.2020.125778
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The reactivity of a quaternary multi-principal element alloy (MPEA), CoCrFeNi, as a substrate in thermal halide chemical vapor deposition (CVD) processes for titanium nitride (TiN) coatings was studied. The coatings were deposited at 850 degrees C-950 degrees C using TiCl4, H-2 and N-2 precursors. The coating microstructures were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM) with energy dispersive X-ray spectroscopy (EDS). Thermodynamic calculations of substrate and coating stability for a gas phase environment of N-2 and H-2 within a temperature range relevant for the experiments showed that Cr is expected to form hexagonal Cr2N and cubic (Ti1-epsilon 1 Cr epsilon 1)N or (Cr1-epsilon 2 Ti epsilon 2)N phases. These phases could however not be discerned in the samples by XRD after the depositions. Cr was detected at the grain boundaries and the top surface by EDS for a sample synthesized at 950 degrees C. Grain boundary and surface diffusion, respectively, were the suggested mechanisms for Cr transport into the coating and onto the top surface. Although thermodynamic calculations indicated that Cr is the most easily etched component of the CoCrFeNi alloy to form gaseous chlorides in similar concentrations to that of the residual Ti-chlorides, no sign of etching were found according to the imaging of the sample cross-sections using SEM and TEM. Cross-section and top surface images further confirmed that the choice of substrate had no significant detrimental influence on the film growth or microstructure.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Activation Energy and High Temperature Oxidation Behavior of Multi-Principal Element Alloy
    Grewal, Harpreet Singh
    Sanjiv, Ramachandran Murali
    Arora, Harpreet Singh
    Kumar, Ram
    Ayyagari, Aditya
    Mukherjee, Sundeep
    Singh, Harpreet
    ADVANCED ENGINEERING MATERIALS, 2017, 19 (11)
  • [42] On the microstructure, corrosion behavior and surface films of the multi-principal element alloy CrNiTiV
    O'Brien, S. P.
    Darwish, A. A.
    DelVecchio, E.
    Mehta, R. M.
    Birbilis, N.
    Gupta, R. K.
    ELECTROCHIMICA ACTA, 2024, 505
  • [43] Designing a eutectic multi-principal element alloy for strength-ductility synergy
    Talluri, Gopi
    Nagini, M.
    Babu, D. Arvindha
    Palguna, Yasam
    Rajesh, Korla
    Murty, B. S.
    Maurya, R. S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [44] A refractory multi-principal element alloy with superior elevated-temperature strength
    Zhao, Bojun
    Chen, Guoqing
    Lv, Shasha
    Fu, Xuesong
    Zhou, Wenlong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [45] Grain-size effects on the deformation in nanocrystalline multi-principal element alloy
    Roy, Ankit
    Devanathan, Ram
    Johnson, Duane D.
    Balasubramanian, Ganesh
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 277
  • [46] The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy
    Smith, Lauren Tw
    Su, Yanqing
    Xu, Shuozhi
    Hunter, Abigail
    Beyerlein, Irene J.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 134
  • [47] Chemical short-range order in multi-principal element alloy with ordering effects on water electrolysis performance
    Yang, Yiyuan
    Jia, Zhe
    Zhang, Xinyue
    Liu, Yujing
    Wang, Qianqian
    Li, Yongjie
    Shao, Liliang
    Di, Siyi
    Kuang, Juan
    Sun, Ligang
    Zhang, Lai -Chang
    Kruzic, Jamie J.
    Lu, Yang
    Lu, Jian
    Shen, Baolong
    MATERIALS TODAY, 2024, 72 : 97 - 108
  • [48] Microstructures and mechanical properties of a precipitation hardened refractory multi-principal element alloy
    Cui, Dingcong
    Yang, Zhongsheng
    Guo, Bojing
    Liu, Linxiang
    Wang, Zhijun
    Li, Junjie
    Wang, Jincheng
    He, Feng
    INTERMETALLICS, 2022, 151
  • [49] A refractory multi-principal element alloy with superior elevated-temperature strength
    Zhao, Bojun
    Chen, Guoqing
    Lv, Shasha
    Fu, Xuesong
    Zhou, Wenlong
    Journal of Alloys and Compounds, 2022, 896
  • [50] Microstructure and Properties of Laser Cladding MoFeCrTiWSix Multi-Principal Element Alloy Coatings
    Zhou Fang
    Liu Qibin
    Li Dongliang
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (12) : 3941 - 3946