Exponential family tensor factorization: an online extension and applications

被引:6
|
作者
Hayashi, Kohei [1 ]
Takenouchi, Takashi [1 ]
Shibata, Tomohiro [1 ]
Kamiya, Yuki [2 ]
Kato, Daishi [2 ]
Kunieda, Kazuo [2 ]
Yamada, Keiji [2 ]
Ikeda, Kazushi [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara, Japan
[2] NEC Corp Ltd, C&C Innovat Res Labs, Minato Ku, Tokyo, Japan
关键词
Bayesian probabilistic model; Tensor factorization; Online learning; Data fusion; Multi-sensor analysis; Anomaly detection; DECOMPOSITIONS;
D O I
10.1007/s10115-012-0517-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new probabilistic model of heterogeneously attributed multi-dimensional arrays. The model can manage heterogeneity by employing individual exponential family distributions for each attribute of the tensor array. Entries of the tensor are connected by latent variables and share information across the different attributes through the latent variables. The assumption of heterogeneity makes a Bayesian inference intractable, and we cast the EM algorithm approximated by the Laplace method and Gaussian process. We also extended the proposal algorithm for online learning. We apply our method to missing-values prediction and anomaly detection problems and show that our method outperforms conventional approaches that do not consider heterogeneity.
引用
收藏
页码:57 / 88
页数:32
相关论文
共 50 条
  • [41] Divergence measures between populations: Applications in the exponential family
    Menendez, M
    Salicru, M
    Morales, D
    Pardo, L
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (05) : 1099 - 1117
  • [42] Unique tensor factorization of algebras
    Nüsken, M
    [J]. MATHEMATISCHE ANNALEN, 1999, 315 (03) : 341 - 362
  • [43] Semantic sensitive tensor factorization
    Nakatsuji, Makoto
    Toda, Hiroyuki
    Sawada, Hiroshi
    Zheng, Jin Guang
    Hendler, James A.
    [J]. ARTIFICIAL INTELLIGENCE, 2016, 230 : 224 - 245
  • [44] Probabilistic Latent Tensor Factorization
    Yilmaz, Y. Kenan
    Cemgil, A. Taylan
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, 2010, 6365 : 346 - 353
  • [45] Nonnegative matrix and tensor factorization
    Cichocki, Andrzej
    Zdunek, Rafal
    Amari, Shun-Ichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 142 - 145
  • [46] Implicit Regularization in Tensor Factorization
    Razin, Noam
    Maman, Asaf
    Cohen, Nadav
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [47] Unique tensor factorization of algebras
    Michael Nüsken
    [J]. Mathematische Annalen, 1999, 315 : 341 - 362
  • [48] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [49] Realization of tensor product and of tensor factorization of rational functions
    Daniel Alpay
    Izchak Lewkowicz
    [J]. Quantum Studies: Mathematics and Foundations, 2019, 6 : 269 - 278
  • [50] A faster tensor robust PCA via tensor factorization
    An-Dong Wang
    Zhong Jin
    Jing-Yu Yang
    [J]. International Journal of Machine Learning and Cybernetics, 2020, 11 : 2771 - 2791