Many-body T-matrix of a two-dimensional Bose-Einstein condensate within the Hartree-Fock-Bogoliubov formalism

被引:13
|
作者
Gies, C
Lee, MD
Hutchinson, DAW
机构
[1] Univ Otago, Dept Phys, Dunedin, New Zealand
[2] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
关键词
D O I
10.1088/0953-4075/38/11/019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a two-dimensional Bose-Einstein condensate, the reduction in dimensionality fundamentally influences collisions between the atoms. In the crossover regime from three to two dimensions, several scattering parameters have been considered. However, finite temperature results are more difficult to obtain. In this work, we present the many-body T-matrix at finite temperatures within a gapless Hartree-Fock-Bogoliubov approach and compare to zero and finite temperature results obtained using different approaches. A semi-classical renormalization method is used to remove the ultraviolet divergence of the anomalous average.
引用
收藏
页码:1797 / 1809
页数:13
相关论文
共 50 条
  • [1] Functional integrals for Hartree-Fock-Bogoliubov many-body matrix elements
    Puddu, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (37): : 7919 - 7927
  • [2] Cranked Hartree-Fock-Bogoliubov calculation for rotating Bose-Einstein condensates
    Hamamoto, Nobukuni
    Oi, Makito
    Onishi, Naoki
    [J]. PHYSICAL REVIEW A, 2007, 75 (06):
  • [3] Self-consistent t-matrix theory of the Hartree-Fock-Bogoliubov approximation for Bose-Einstein-condensed systems
    Kim, Ha
    Kim, Cheng Song
    Huang, Chang Liol
    Song, He-Shan
    Yi, Xue-Xi
    [J]. PHYSICAL REVIEW A, 2012, 85 (03)
  • [4] Hartree-Fock-Bogoliubov model and simulation of attractive and repulsive Bose-Einstein condensates
    Snyder, V. D.
    Kokkelmans, S. J. J. M. F.
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [5] Perturbative Hartree-Fock-Bogoliubov model for many-body pairing correlations
    Hagino, K
    Sagawa, H
    [J]. PHYSICAL REVIEW C, 2005, 71 (04):
  • [6] Many-body computations by stochastic sampling in Hartree-Fock-Bogoliubov space
    Shi, Hao
    Zhang, Shiwei
    [J]. PHYSICAL REVIEW B, 2017, 95 (04)
  • [7] Dynamical Hartree-Fock-Bogoliubov theory of vortices in Bose-Einstein condensates at finite temperature
    Wild, B. G.
    Hutchinson, D. A. W.
    [J]. PHYSICAL REVIEW A, 2011, 83 (06):
  • [8] The two-dimensional Bose-Einstein condensate
    Fernández, JP
    Mullin, WJ
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2002, 128 (5-6) : 233 - 249
  • [9] Many-body rate limit on photoassociation of a Bose-Einstein condensate
    Mackie, Matt
    Phou, Pierre
    [J]. PHYSICAL REVIEW A, 2010, 82 (03):
  • [10] Control of decoherence of many-body excitations in a Bose-Einstein Condensate
    Bar-Gill, N.
    Rowen, E.E.
    Pugatch, R.
    Kurizki, G.
    Davidson, N.
    [J]. Optics InfoBase Conference Papers, 2008,