Dynamical Hartree-Fock-Bogoliubov theory of vortices in Bose-Einstein condensates at finite temperature

被引:0
|
作者
Wild, B. G. [1 ]
Hutchinson, D. A. W. [1 ]
机构
[1] Univ Otago, Dept Phys, Jack Dodd Ctr Quantum Technol, Dunedin 9054, New Zealand
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 06期
关键词
DISSIPATIVE DYNAMICS; VELOCITY; TRAPS; STATE;
D O I
10.1103/PhysRevA.83.063635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method utilizing the continuity equation for the condensate density to make predictions of the precessional frequency of single off-axis vortices and of vortex arrays in Bose-Einstein condensates at finite temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB) formalism. We solve the continuity equation for the condensate density self-consistently with the orthogonalized HFB equations and find stationary solutions in the frame rotating at this frequency. As an example of the utility of this formalism we obtain time-independent solutions for quasi-two-dimensional rotating systems in the corotating frame. We compare these results with time-dependent predictions where we simulate stirring of the condensate.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cranked Hartree-Fock-Bogoliubov calculation for rotating Bose-Einstein condensates
    Hamamoto, Nobukuni
    Oi, Makito
    Onishi, Naoki
    [J]. PHYSICAL REVIEW A, 2007, 75 (06):
  • [2] Hartree-Fock-Bogoliubov model and simulation of attractive and repulsive Bose-Einstein condensates
    Snyder, V. D.
    Kokkelmans, S. J. J. M. F.
    Carr, Lincoln D.
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [3] Hartree-Fock-Bogoliubov theory of a charged Bose gas at finite temperature
    Davoudi, B
    Minguzzi, A
    Tosi, MP
    [J]. PHYSICAL REVIEW B, 2002, 65 (14) : 1 - 7
  • [4] Modified Hartree-Fock-Bogoliubov theory at finite temperature
    Dang, ND
    Arima, A
    [J]. PHYSICAL REVIEW C, 2003, 68 (01):
  • [5] Extended Hartree-Fock-Bogoliubov theory for degenerate Bose systems
    Tommasini, P
    de Passos, EJV
    Pires, MOC
    Piza, AFRD
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (21) : 3165 - 3181
  • [6] Collective excitations of a dilute Bose gas at finite temperature: time dependent Hartree-Fock-Bogoliubov theory
    Boudjemaa, Abdelaali
    Guebli, Nadia
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [7] Precession of vortices in dilute Bose-Einstein condensates at finite temperature
    Wild, B. G.
    Hutchinson, D. A. W.
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [8] Finite-temperature dynamics of vortices in Bose-Einstein condensates
    Gautam, S.
    Roy, Arko
    Mukerjee, Subroto
    [J]. PHYSICAL REVIEW A, 2014, 89 (01):
  • [9] Hartree-Fock theory for Bose-Einstein condensates and the inclusion of correlation effects
    Esry, BD
    [J]. PHYSICAL REVIEW A, 1997, 55 (02): : 1147 - 1159
  • [10] Finite-temperature Hartree-Fock-Bogoliubov theory for exciton-polaritons
    Grudinina, A. M.
    Kurbakov, I. L.
    Lozovik, Yu E.
    Voronova, N. S.
    [J]. PHYSICAL REVIEW B, 2021, 104 (12)