Anomalous diffusion in a symbolic model

被引:2
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Santoro, P. A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, PR, Brazil
[2] CNPq, Natl Inst Sci & Technol Complex Syst, BR-22290180 Rio De Janeiro, Brazil
关键词
TIME FRACTIONAL DIFFUSION; RANDOM-WALKS; SEQUENCES; ENTROPY; DISCRETE; LATTICES; EQUATION; SYSTEMS;
D O I
10.1088/0031-8949/83/04/045007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Minimal model for anomalous diffusion
    Flekkoy, Eirik G.
    [J]. PHYSICAL REVIEW E, 2017, 95 (01)
  • [2] Anomalous Diffusion in a Trading Model
    Khidzir, Sidiq Mohamad
    Abdullah, Wan Ahmad Tajuddin Wan
    [J]. FRONTIERS IN PHYSICS-BOOK, 2009, 1150 : 206 - 209
  • [3] Fractal model of anomalous diffusion
    Lech Gmachowski
    [J]. European Biophysics Journal, 2015, 44 : 613 - 621
  • [4] Fractal model of anomalous diffusion
    Gmachowski, Lech
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 (08): : 613 - 621
  • [5] Anomalous two-state model for anomalous diffusion
    Shushin, AI
    [J]. PHYSICAL REVIEW E, 2001, 64 (05): : 12
  • [6] Anomalous diffusion in generalized Dykhne model
    Dvoretskaya, O. A.
    Kondratenko, P. S.
    Matveev, L. V.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 110 (01) : 58 - 66
  • [7] Anomalous diffusion in generalized Dykhne model
    O. A. Dvoretskaya
    P. S. Kondratenko
    L. V. Matveev
    [J]. Journal of Experimental and Theoretical Physics, 2010, 110 : 58 - 66
  • [8] Anomalous diffusion and quasistationarity in the HMF model
    Pluchino, Alessandro
    Rapisarda, Andrea
    [J]. COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 129 - 136
  • [9] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    [J]. PHYSICA A, 1994, 211 (01): : 13 - 24
  • [10] Anomalous diffusion in a running sandpile model
    Carreras, BA
    Lynch, VE
    Newman, DE
    Zaslavsky, GM
    [J]. PHYSICAL REVIEW E, 1999, 60 (04) : 4770 - 4778