Fully-unintegrated parton distribution and fragmentation functions at perturbative k⊥

被引:54
|
作者
Jain, Ambar [1 ]
Procura, Massimiliano [2 ]
Waalewijn, Wouter J. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[2] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
来源
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Jets; QCD; STATE INTERACTIONS; SOFT GLUONS; GAUGE; HEAVY; BOSON;
D O I
10.1007/JHEP04(2012)132
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We define and study the properties of generalized beam functions (BFs) and fragmenting jet functions (FJFs), which are fully-unintegrated parton distribution functions (PDFs) and fragmentation functions (FFs) for perturbative k(perpendicular to). We calculate at one loop the coefficients for matching them onto standard PDFs and FFs, correcting previous results for the BFs in the literature. Technical subtleties when measuring transverse momentum in dimensional regularization are clarified, and this enables us to renormalize in momentum space. Generalized BFs describe the distribution in the full four-momentum k(mu) of a colliding parton taken out of an initial-state hadron, and therefore characterize the collinear initial-state radiation. We illustrate their importance through a factorization theorem for pp -> l(+)l(-) + 0 jets, where the transverse momentum of the lepton pair is measured. Generalized FJFs are relevant for the analysis of semi-inclusive processes where the full momentum of a hadron, fragmenting from a jet with constrained invariant mass, is measured. Their significance is shown for the example of e(+) e(-) -> dijet+h, where the perpendicular momentum of the fragmenting hadron with respect to the thrust axis is measured.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Fully-unintegrated parton distribution and fragmentation functions at perturbative k⊥
    Ambar Jain
    Massimiliano Procura
    Wouter J. Waalewijn
    [J]. Journal of High Energy Physics, 2012
  • [2] Resummation of double-differential cross sections and fully-unintegrated parton distribution functions
    Massimiliano Procura
    Wouter J. Waalewijn
    Lisa Zeune
    [J]. Journal of High Energy Physics, 2015
  • [3] Resummation of double-differential cross sections and fully-unintegrated parton distribution functions
    Procura, Massimiliano
    Waalewijn, Wouter J.
    Zeune, Lisa
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02):
  • [4] Fully unintegrated parton correlation functions
    Rogers, Ted C.
    [J]. ACTA PHYSICA POLONICA B, 2008, 39 (07): : 1715 - 1723
  • [5] On the use of the KMR unintegrated parton distribution functions
    Golec-Biernat, Krzysztof
    Stasto, Anna M.
    [J]. PHYSICS LETTERS B, 2018, 781 : 633 - 638
  • [6] Next-to-leading order hard scattering using fully unintegrated parton distribution functions
    Rogers, Ted C.
    [J]. PHYSICAL REVIEW D, 2008, 78 (07):
  • [7] A new phenomenological investigation of KMR and MRW unintegrated parton distribution functions
    M. Modarres
    H. Hosseinkhani
    N. Olanj
    M. R. Masouminia
    [J]. The European Physical Journal C, 2015, 75
  • [8] A new phenomenological investigation of KMR and MRW unintegrated parton distribution functions
    Modarres, M.
    Hosseinkhani, H.
    Olanj, N.
    Masouminia, M. R.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (11): : 1 - 13
  • [9] Perturbative renormalization of quasi-parton distribution functions
    Constantinou, Martha
    Panagopoulos, Haralambos
    [J]. PHYSICAL REVIEW D, 2017, 96 (05)
  • [10] Old and new parton distribution and fragmentation functions
    Efremov, AV
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 : A97 - A105