Next-to-leading order hard scattering using fully unintegrated parton distribution functions

被引:18
|
作者
Rogers, Ted C. [1 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
来源
PHYSICAL REVIEW D | 2008年 / 78卷 / 07期
关键词
D O I
10.1103/PhysRevD.78.074018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We calculate the next-to-leading order fully unintegrated hard scattering coefficient for unpolarized gluon-induced deep inelastic scattering using the logical framework of parton correlation functions developed in previous work. In our approach, exact four-momentum conservation is maintained throughout the calculation. Hence, all nonperturbative functions, like parton distribution functions, depend on all components of parton four-momentum. In contrast to the usual collinear factorization approach where the hard scattering coefficient involves generalized functions (such as Dirac delta functions), the fully unintegrated hard scattering coefficient is an ordinary function. Gluon-induced deep inelastic scattering provides a simple illustration of the application of the fully unintegrated factorization formalism with a nontrivial hard scattering coefficient, applied to a phenomenologically interesting case. Furthermore, the gluon-induced process allows for a parametrization of the fully unintegrated gluon distribution function.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Determination of nuclear parton distribution functions and their uncertainties at next-to-leading order
    Hirai, M.
    Kumano, S.
    Nagai, T. -H.
    [J]. PHYSICAL REVIEW C, 2007, 76 (06):
  • [2] Fully unintegrated parton correlation functions and factorization in lowest-order hard scattering
    Collins, J. C.
    Rogers, T. C.
    Stasto, A. M.
    [J]. PHYSICAL REVIEW D, 2008, 77 (08):
  • [3] Next-to-leading order QCD analysis of parton distribution functions with LHC data
    Vafaee, A.
    Khorramian, A.
    [J]. NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2017, 282 : 32 - 36
  • [4] Parton densities and structure functions beyond the next-to-leading order
    van Neerven, WL
    Vogt, A
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 89 : 143 - 148
  • [5] SMALL-X BEHAVIOR OF PARTON DISTRIBUTION-FUNCTIONS IN THE NEXT-TO-LEADING ORDER QCD PARTON MODEL
    TUNG, WK
    [J]. NUCLEAR PHYSICS B, 1989, 315 (02) : 378 - 390
  • [6] Generalized parton distributions at next-to-leading order
    McDermott, M
    Freund, A
    [J]. ACTA PHYSICA POLONICA B, 2002, 33 (10): : 3063 - 3068
  • [7] Real photon structure functions in the massive parton model in next-to-leading order
    Watanabe, Norihisa
    Kiyo, Yuichiro
    Sasaki, Ken
    [J]. PHYSICAL REVIEW D, 2013, 88 (03):
  • [8] Nuclear parton densities and their uncertainties at the next-to-leading order
    Tehrani, S. Atashbar
    [J]. PHYSICAL REVIEW C, 2012, 86 (06):
  • [9] Fully unintegrated parton correlation functions
    Rogers, Ted C.
    [J]. ACTA PHYSICA POLONICA B, 2008, 39 (07): : 1715 - 1723
  • [10] Calculation of the transverse parton distribution functions at next-to-next-to-leading order
    Gehrmann, Thomas
    Luebbert, Thomas
    Yang, Li Lin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):