Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data (vol 62, pg 2719, 2017)

被引:3
|
作者
Hornbrook, Mark C. [1 ]
Goshen, Ran [2 ]
Choman, Eran [2 ]
O'Keeffe-Rosetti, Maureen [1 ]
Kinar, Yaron [2 ,3 ]
Liles, Elizabeth G. [1 ]
Rust, Kristal C. [1 ,4 ]
机构
[1] Kaiser Permanente Ctr Hlth Res, 3800 North Interstate Ave, Portland, OR 97227 USA
[2] Medial EarlySign Inc, 11 HaZait St, Kfar Malal, Israel
[3] Medial Res Inc, 11 HaZait St, Kfar Malal, Israel
[4] LL Nursing Adm, Kaiser Sunnyside Med Ctr, 10180 SE Sunnyside Rd, Clackamas, OR 97015 USA
关键词
D O I
10.1007/s10620-017-4859-5
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
The article Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data, written by Mark C. Hornbrook, Ran Goshen, Eran Choman, Maureen O'Keeffe-Rosetti, Yaron Kinar, Elizabeth G. Liles, and Kristal C. Rust, was originally published Online First without open access.
引用
收藏
页码:270 / 270
页数:1
相关论文
共 26 条
  • [21] Developing an agnostic risk prediction model for acute kidney injury in cancer patients using a machine learning algorithm from blood results data
    Scanlon, Lauren A.
    Barrusio, Jorge
    Garbett, Alexander
    CLINICAL CANCER RESEARCH, 2021, 27 (05)
  • [22] Prostate Cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data
    Cosma, Georgina
    McArdle, Stephanie E.
    Foulds, Gemma A.
    Hood, Simon P.
    Reeder, Stephen
    Johnson, Catherine
    Khan, Masood A.
    Pockley, A. Graham
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [23] Atomic force microscopy-based assessment of multimechanical cellular properties for classification of graded bladder cancer cells and cancer early diagnosis using machine learning analysis (vol 158, pg 358, 2023)
    Zhu, Xinyao
    Qin, Rui
    Qu, Kaige
    Wang, Zuobin
    Zhao, Xuexia
    Xu, Wei
    ACTA BIOMATERIALIA, 2023, 162
  • [24] Prognostic variables for risk of recurrence in patients (pts) with HR+/HER2-early breast cancer (EBC) using data from the NATALEE trial: a machine learning (ML) model-based analysis
    Fasching, P. A.
    Barrios, C. H.
    Lim, E.
    Graff, S. L.
    Chia, S.
    Frenel, J. -s.
    Im, S. -a.
    Huang, C. -s.
    Ring, A.
    Nowecki, Z.
    Liu, Q.
    Akdere, M.
    Zarate, J. P.
    Hu, H.
    Pantoja, K.
    O'Shaughnessy, J. A.
    BREAST, 2025, 80
  • [26] Factors associated with distant recurrence (DR) risk in patients (pts) with HR+/HER2-early breast cancer (EBC): a machine learning (ML) model-based analysis using real-world (RW) data
    Sparano, J. A.
    Lustberg, M. B.
    de Nonneville, A.
    Bachelot, T.
    Santa-Maria, C. A.
    Blyuss, O.
    Fasching, P. A.
    Brezden-Masley, C.
    Park, Y. H.
    Akdere, M.
    Ye, F.
    Pattipaka, T.
    Manneni, V. R.
    Kurz, C.
    Castro, P. Dominguez
    Howard, F. M.
    BREAST, 2025, 80