Realizing arithmetic invariants of hyperbolic 3-manifolds

被引:0
|
作者
Neumann, Walter D. [1 ]
机构
[1] Columbia Univ, Barnard Coll, New York, NY 10027 USA
关键词
EXTENDED BLOCH GROUP; CHERN-SIMONS CLASS; ETA-INVARIANT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:233 / 246
页数:14
相关论文
共 50 条
  • [31] On some invariants of 3-manifolds
    Ohtsuki, T
    GEOMETRY AND PHYSICS, 1997, 184 : 411 - 427
  • [32] On hyperbolic 3-manifolds realizing the maximal distance between toroidal Dehn fillings
    Goda, Hiroshi
    Teragaito, Masakazu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 463 - 507
  • [33] Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds
    Menal-Ferrer, Pere
    Porti, Joan
    JOURNAL OF TOPOLOGY, 2014, 7 (01) : 69 - 119
  • [34] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [35] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [36] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [37] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [38] Exceptional hyperbolic 3-manifolds
    Gabai, David
    Trnkova, Maria
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 703 - 730
  • [39] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110
  • [40] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    TOPOLOGY, 1985, 24 (03) : 307 - 332