Explore Spatio-Temporal Learning of Large Sample Hydrology Using Graph Neural Networks

被引:34
|
作者
Sun, Alexander Y. [1 ]
Jiang, Peishi [2 ]
Mudunuru, Maruti K. [2 ]
Chen, Xingyuan [2 ]
机构
[1] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
Streamflow forecasting; Large sample hydrology; Graph neural networks; Explainable AI; Machine learning; Prediction in Ungauged Basins; CATCHMENT ATTRIBUTES; DATA SET; STREAMFLOW; PRECIPITATION; METEOROLOGY; PREDICTION; PATTERNS; DATASET; BASINS; RISK;
D O I
10.1029/2021WR030394
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Streamflow forecasting over gauged and ungauged basins play a vital role in water resources planning, especially under the changing climate. Increased availability of large sample hydrology data sets, together with recent advances in deep learning techniques, has presented new opportunities to explore temporal and spatial patterns in hydrological signatures for improving streamflow forecasting. The purpose of this study is to adapt and benchmark several state-of-the-art graph neural network (GNN) architectures, including ChebNet, Graph Convolutional Network (GCN), and GraphWaveNet, for end-to-end graph learning. We explicitly represent river basins as nodes in a graph, learn the spatiotemporal nodal dependencies, and then use the learned relations to predict streamflow simultaneously across all nodes in the graph. The efficacy of the developed GNN models is investigated using the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set under two settings, fixed graph topology (transductive learning), and variable graph topology (inductive learning), with the latter applicable to prediction in ungauged basins (PUB). Results indicate that GNNs are generally robust and computationally efficient, achieving similar or better performance than a baseline model trained using the long short-term memory (LSTM) network. Further analyses are conducted to interpret the graph learning process at the edge and node levels and to investigate the effect of different model configurations. We conclude that graph learning constitutes a viable machine learning-based method for aggregating spatiotemporal information from a multitude of sources for streamflow forecasting
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift
    Zhang, Zeyang
    Wang, Xin
    Zhang, Ziwei
    Li, Haoyang
    Qin, Zhou
    Zhu, Wenwu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [22] Spatio-temporal Dual Graph Neural Networks for Travel Time Estimation
    Jin, Guangyin
    Yan, Huan
    Li, Fuxian
    Huang, Jincai
    Li, Yong
    ACM Transactions on Spatial Algorithms and Systems, 2024, 10 (03)
  • [23] Learning Anticipation through Priming in Spatio-temporal Neural Networks
    Yusoff, Nooraini
    Gruening, Andre
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 168 - 175
  • [24] MOTION LEARNING USING SPATIO-TEMPORAL NEURAL NETWORK
    Yusoff, Nooraini
    Kabir-Ahmad, Farzana
    Jemili, Mohamad-Farif
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2020, 19 (02): : 207 - 223
  • [25] Graph Neural Processes for Spatio-Temporal Extrapolation
    Hu, Junfeng
    Liang, Yuxuan
    Fan, Zhencheng
    Chen, Hongyang
    Zheng, Yu
    Zimmermann, Roger
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 752 - 763
  • [26] Spatio-Temporal Functional Neural Networks
    Rao, Aniruddha Rajendra
    Wang, Qiyao
    Wang, Haiyan
    Khorasgani, Hamed
    Gupta, Chetan
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 81 - 89
  • [27] Spatio-Temporal RBF Neural Networks
    Khan, Shujaat
    Ahmad, Jawwad
    Sadiq, Alishba
    Naseem, Imran
    Moinuddin, Muhammad
    2018 3RD INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCES AND TECHNOLOGY (ICEEST), 2018,
  • [28] Continual spatio-temporal graph convolutional networks
    Hedegaard, Lukas
    Heidari, Negar
    Iosifidis, Alexandros
    PATTERN RECOGNITION, 2023, 140
  • [29] SPATIO-TEMPORAL GRAPH COMPLEMENTARY SCATTERING NETWORKS
    Cheng, Zida
    Chen, Siheng
    Zhang, Ya
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5573 - 5577
  • [30] Graph-Based Spatio-Temporal Backpropagation for Training Spiking Neural Networks
    Yan, Yulong
    Chu, Haoming
    Chen, Xin
    Jin, Yi
    Huan, Yuxiang
    Zheng, Lirong
    Zou, Zhuo
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,