On a maximum of stable Levy processes

被引:0
|
作者
Molchan, GM
机构
[1] RAS, Int Inst Theory Earthquake Prognosis & Math Geoph, Moscow 113556, Russia
[2] Observ Cote Azur, F-06003 Nice, France
关键词
extremal values; Levy processes; self-similar processes;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let G and S be the location and the maximal value of a stable Levy process X on an interval [0,a]. It is shown that the dimensionless S/G(h), where h is the self-similarity parameter of X, is independent of G. This fact allows us to analyze G for the trajectories of X with high and low maxima.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 50 条
  • [31] Fractional Levy Stable and Maximum Lyapunov Exponent for Wind Speed Prediction
    Duan, Shouwu
    Song, Wanqing
    Cattani, Carlo
    Yasen, Yakufu
    Liu, He
    SYMMETRY-BASEL, 2020, 12 (04):
  • [32] Gaussian approximation of multivariate Levy processes with applications to simulation of tempered stable processes
    Cohen, Serge
    Rosinski, Jan
    BERNOULLI, 2007, 13 (01) : 195 - 210
  • [33] Stable Levy processes, self-similarity and the unit ball
    Kyprianou, Andreas E.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (01): : 617 - 690
  • [34] Anisotropic stable Levy copula processes - Analytical and numerical aspects
    Farkas, Walter
    Reich, Nils
    Schwab, Christoph
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (09): : 1405 - 1443
  • [35] Stochastic integration with respect to canonical α-stable cylindrical Levy processes
    Bodo, Gergely
    Riedle, Markus
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [36] Stable Levy Processes via Lamperti-Type Representations
    Bormetti, Giacomo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 789 - 790
  • [37] OSCILLATION OF MODES OF SOME SEMI-STABLE LEVY PROCESSES
    WATANABE, T
    NAGOYA MATHEMATICAL JOURNAL, 1993, 132 : 141 - 153
  • [38] Max-stable processes and stationary systems of Levy particles
    Engelke, Sebastian
    Kabluchko, Zakhar
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4272 - 4299
  • [39] Superposition of chaotic processes with convergence to Levy's stable law
    Umeno, K
    PHYSICAL REVIEW E, 1998, 58 (02): : 2644 - 2647
  • [40] Dimension results for sample paths of operator stable Levy processes
    Meerschaert, MM
    Xiao, YM
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (01) : 55 - 75