The geometric mean density of states and its application to one-dimensional nonuniform systems

被引:12
|
作者
Zhang, L. [1 ]
Gong, L. Y. [2 ]
Tong, P. Q. [1 ]
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210097, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Sci, Ctr Optofluid Technol, Nanjing 210003, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL B | 2011年 / 80卷 / 04期
关键词
ANDERSON LOCALIZATION; GREENS-FUNCTION; MODEL; ABSENCE;
D O I
10.1140/epjb/e2011-20062-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
By using the measure of the ratio R of the geometric mean of the local density of states (LDOS) and the arithmetic mean of LDOS, the localization properties can be efficiently characterized in one-dimensional nonuniform single-electron and two-interacting-particle (TIP) systems. For single-electron systems, the extended and localized states can be distinguished by the ratio R. There are sharp transitions in the ratio R at mobility edges. For TIP systems, the localization properties of particle states can also be reflected by the ratio R. These results are in accordance with what obtained by other methods. Therefore, the ratio R is a suitable quantity to characterize the localization properties of particle states for these 1D nonuniform systems.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 50 条
  • [21] Ground states in one-dimensional electron systems
    Hansen, W
    Schmerek, D
    Steinbach, C
    USPEKHI FIZICHESKIKH NAUK, 1998, 168 (02): : 188 - 192
  • [22] Topologically Protected States in One-Dimensional Systems
    Fefferman, C. L.
    Lee-Thorp, J. P.
    Weinstein, M. I.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 247 (1173) : 1 - +
  • [23] ELECTRONIC STATES OF ONE-DIMENSIONAL DISORDERED SYSTEMS
    BHATTACH.AK
    ROY, CL
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1972, 10 (04) : 253 - &
  • [24] Pair states in one-dimensional Dirac systems
    Hartmann, R. R.
    Portnoi, M. E.
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [25] ONE-DIMENSIONAL DENSITY OF STATES AND THE PHASE OF THE TRANSMISSION AMPLITUDE
    AVISHAI, Y
    BAND, YB
    PHYSICAL REVIEW B, 1985, 32 (04): : 2674 - 2676
  • [26] Density of states of a one-dimensional disordered photonic crystal
    A. A. Greshnov
    M. A. Kaliteevskiĭ
    R. A. Abram
    S. Brand
    G. G. Zegrya
    Physics of the Solid State, 2007, 49 : 1999 - 2003
  • [27] Density of states of a one-dimensional disordered photonic crystal
    Greshnov, A. A.
    Kaliteevskii, M. A.
    Abram, R. A.
    Brand, S.
    Zegrya, G. G.
    PHYSICS OF THE SOLID STATE, 2007, 49 (10) : 1999 - 2003
  • [28] Density of states of one-dimensional Pauli ionic conductor
    Stasyuk, I. V.
    Dulepa, I. R.
    CONDENSED MATTER PHYSICS, 2007, 10 (02) : 259 - 268
  • [29] DENSITY OF STATES AND TRANSMISSION IN THE ONE-DIMENSIONAL SCATTERING PROBLEM
    TRZECIAKOWSKI, W
    GURIOLI, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (11) : 1701 - 1706