ICE: An automated statistical approach to identifying endmembers in hyperspectral images

被引:0
|
作者
Berman, M [1 ]
Kiiveri, H [1 ]
Lagerstrom, R [1 ]
Ernst, A [1 ]
Dunne, R [1 ]
Huntington, J [1 ]
机构
[1] CSIRO Math & Informat Sci, N Ryde, NSW 2113, Australia
关键词
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Several of the more important endmember-finding algorithms for hyperspectral data are discussed and their shortcomings highlighted. A new algorithm, ICE, which attempts to overcome these shortcomings is introduced. An example of its use is given.
引用
收藏
页码:279 / 283
页数:5
相关论文
共 50 条
  • [41] Estimating the Number of Endmembers in Hyperspectral Images Using the Normal Compositional Model and a Hierarchical Bayesian Algorithm
    Eches, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (03) : 582 - 591
  • [42] Impact of missing endmembers on the performance of the OSP detector for hyperspectral images - art. no. 656524
    Bajorski, Peter
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, 2007, 6565 : 56524 - 56524
  • [43] Automated registration of hyperspectral images for precision agriculture
    Erives, H
    Fitzgerald, GJ
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2005, 47 (02) : 103 - 119
  • [44] Automated tongue segmentation in hyperspectral images for medicine
    Liu, Zhi
    Yan, Jing-qi
    Zhang, David
    Li, Qing-Li
    APPLIED OPTICS, 2007, 46 (34) : 8328 - 8334
  • [45] A NON-NEGATIVE MATRIX FACTORIZATION APPROACH FOR HYPERSPECTRAL UNMIXING WITH PARTIAL KNOWN ENDMEMBERS
    Wang, Nan
    Zhang, Lifu
    Cen, Yi
    Tong, Qingxi
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [46] Extraction of Endmembers From Hyperspectral Images Using A Weighted Fuzzy Purified-Means Clustering Model
    Xu, Linlin
    Wong, Alexander
    Li, Fan
    Clausi, David A.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 695 - 707
  • [47] LOW-RANK AND SPARSE NMF FOR JOINT ENDMEMBERS' NUMBER ESTIMATION AND BLIND UNMIXING OF HYPERSPECTRAL IMAGES
    Giampouras, Paris V.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1430 - 1434
  • [48] Automated Analysis of Reflection Mode Terahertz Hyperspectral Images
    Berman, Mark
    Radhanpura, Krunal
    Farrant, David
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2022, 12 (04) : 370 - 384
  • [49] Automated Labeling of Hyperspectral Images for Oil Spills Classification
    Said, Madonna
    Hany, Monica
    Magdy, Monica
    Saleh, Omar
    Sayed, Maha
    Hassan, Yomna M., I
    Nabil, Ayman
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (08) : 490 - 496
  • [50] A Bayesian Restoration Approach for Hyperspectral Images
    Zhang, Yifan
    Duijster, Arno
    Scheunders, Paul
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (09): : 3453 - 3462