Numerical study of a Lyapunov functional for the complex Ginzburg-Landau equation

被引:31
|
作者
Montagne, R [1 ]
HernandezGarcia, E [1 ]
SanMiguel, M [1 ]
机构
[1] UNIV ILLES BALEARS, CSIC, IMEDEA, INST MEDITERRANI ESTUDIS AVANCATS, E-07071 PALMA DE MALLORCA, SPAIN
关键词
complex Ginzburg-Landau equation; non-equilibrium potential; Lyapunov potential; spatio-temporal chaos;
D O I
10.1016/0167-2789(96)00013-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We numerically study in the one-dimensional case the validity of the functional calculated by Graham and coworkers (Graham and Tel, 1990; Descalzi and Graham, 1994) as a Lyapunov potential for the Complex Ginzburg-Landau equation. In non-chaotic regions of parameter space the functional decreases monotonically in time towards the plane wave attractors, as expected for a Lyapunov functional, provided that no phase singularities are encountered. In the phase turbulence region the potential relaxes towards a value characteristic of the phase turbulent attractor, and the dynamics there approximately preserves a constant value. However, there are very small but systematic deviations from the theoretical predictions, that increase when going deeper in the phase turbulence region. In more disordered chaotic regimes characterized by the presence of phase singularities the functional is ill-defined and then not a correct Lyapunov potential.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 50 条
  • [21] Target waves in the complex Ginzburg-Landau equation
    Hendrey, M
    Nam, K
    Guzdar, P
    Ott, E
    PHYSICAL REVIEW E, 2000, 62 (06): : 7627 - 7631
  • [22] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [23] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [24] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [25] Null controllability of the complex Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 649 - 673
  • [26] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [27] Boundary effects in the complex Ginzburg-Landau equation
    Eguíluz, VM
    Hernández-García, E
    Piro, O
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11): : 2209 - 2214
  • [29] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [30] Complex Ginzburg-Landau equation with nonlocal coupling
    Tanaka, D
    Kuramoto, Y
    PHYSICAL REVIEW E, 2003, 68 (02):