Gibbs posterior inference on multivariate quantiles

被引:6
|
作者
Bhattacharya, Indrabati [1 ]
Martin, Ryan [2 ]
机构
[1] Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC USA
基金
美国国家科学基金会;
关键词
Bernstein-von Mises phenomenon; Concentration rate; Credible sets; Learning rate; Multivariate median; LIKELIHOOD; REGRESSION; DISPERSION; MODELS; BOUNDS;
D O I
10.1016/j.jspi.2021.10.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian and other likelihood-based methods require specification of a statistical model and may not be fully satisfactory for inference on quantities, such as quantiles, that are not naturally defined as model parameters. In this paper, we construct a direct and model-free Gibbs posterior distribution for multivariate quantiles. Being model-free means that inferences drawn from the Gibbs posterior are not subject to model misspecification bias, and being direct means that no priors for or marginalization over nuisance parameters are required. We show here that the Gibbs posterior enjoys a root-n convergence rate and a Bernstein-von Mises property, i.e., for large n, the Gibbs posterior distribution can be approximated by a Gaussian. Moreover, we present numerical results showing the validity and efficiency of credible sets derived from a suitably scaled Gibbs posterior. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 121
页数:16
相关论文
共 50 条
  • [21] Distributions of posterior quantiles via matching
    Kolotilin, Anton
    Wolitzky, Alexander
    THEORETICAL ECONOMICS, 2024, 19 (04) : 1399 - 1413
  • [22] A Bayesian nonparametric approach to causal inference on quantiles
    Xu, Dandan
    Daniels, Michael J.
    Winterstein, Almut G.
    BIOMETRICS, 2018, 74 (03) : 986 - 996
  • [23] SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES
    Kurisu, Daisuke
    Otsu, Taisuke
    ECONOMETRIC THEORY, 2023,
  • [24] ON SEMIPARAMETRIC PIVOTAL BAYESIAN-INFERENCE FOR QUANTILES
    SWARTZ, TB
    VILLEGAS, C
    MARTINEZ, CJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (10) : 2499 - 2515
  • [25] Inference for Optimal Split Point in Conditional Quantiles
    Fan, Yanqin
    Liu, Ruixuan
    Zhu, Dongming
    FRONTIERS OF ECONOMICS IN CHINA, 2016, 11 (01) : 40 - 59
  • [26] High-dimensional Simultaneous Inference of Quantiles
    Lou, Zhipeng
    Wu, Wei Biao
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2025,
  • [27] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [28] On a multivariate implementation of the Gibbs sampler
    GarciaCortes, LA
    Sorensen, D
    GENETICS SELECTION EVOLUTION, 1996, 28 (01) : 121 - 126
  • [29] Inverting estimating equations for causal inference on quantiles
    Cheng, Chao
    Li, Fan
    BIOMETRIKA, 2025, 112 (01)
  • [30] QUANTILE TOMOGRAPHY: USING QUANTILES WITH MULTIVARIATE DATA
    Kong, Linglong
    Mizera, Ivan
    STATISTICA SINICA, 2012, 22 (04) : 1589 - 1610