Model of the Hippocampal Learning of Spatio-temporal Sequences

被引:0
|
作者
Hirel, Julien [1 ]
Gaussier, Philippe [1 ]
Quoy, Mathias [1 ]
机构
[1] Univ Cergy Pontoise, Neurocybernet Team, ETIS, CNRS,ENSEA, F-95000 Cergy Pontoise, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a model of the hippocampus aimed at learning the timed association between subsequent sensory events. The properties of the neural network allow it to learn and predict the evolution of continuous rate-coded signals as well as the occurrence of transitory events, using both spatial and non-spatial information. The system is able to provide predictions based on the time trace of past sensory events. Performance of the neural network in the precise temporal learning of spatial and non-spatial signals is tested in a simulated experiment. The ability of the hippocampus proper to predict the occurrence of upcoming spatio-temporal events could play a crucial role in the carrying out of tasks requiring accurate time estimation and spatial localization.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 50 条
  • [1] Learning and retrieval of spatio-temporal sequences in the hippocampal network with theta phase precession
    Wu, ZH
    Yamaguchi, Y
    [J]. 8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 671 - 676
  • [2] A Hippocampal Model for Behavioral Time Acquisition and Fast Bidirectional Replay of Spatio-Temporal Memory Sequences
    Gauy, Marcelo Matheus
    Lengler, Johannes
    Einarsson, Hafsteinn
    Meier, Florian
    Weissenberger, Felix
    Yanik, Mehmet Fatih
    Steger, Angelika
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [3] Spatio-temporal alignment of sequences
    Caspi, Y
    Irani, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (11) : 1409 - 1424
  • [4] Joint Spatio-Temporal Alignment of Sequences
    Diego, Ferran
    Serrat, Joan
    Lopez, Antonio M.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (06) : 1377 - 1387
  • [5] Dynamic proximity of spatio-temporal sequences
    Horn, D
    Dror, G
    Quenet, B
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05): : 1002 - 1008
  • [6] Incremental learning of spatio-temporal patterns with model selection
    Yamauchi, Koichiro
    Sato, Masayoshi
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 149 - +
  • [7] Spatio-temporal learning rule and the Hebbian learning rule in Hippocampal CA1
    Tsukada, Minoru
    Pan, Xiaochuan
    Yamazaki, Yoshiyuki
    [J]. NEUROSCIENCE RESEARCH, 2006, 55 : S64 - S64
  • [8] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    [J]. PERCEPTION, 2012, 41 : 58 - 58
  • [9] Spatio-Temporal Split Learning
    Kim, Joongheon
    Park, Seunghoon
    Jung, Soyi
    Yoo, Seehwan
    [J]. 51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS - SUPPLEMENTAL VOL (DSN 2021), 2021, : 11 - 12
  • [10] Spatio-temporal alignment of pedobarographic image sequences
    Francisco P. M. Oliveira
    Andreia Sousa
    Rubim Santos
    João Manuel R. S. Tavares
    [J]. Medical & Biological Engineering & Computing, 2011, 49 : 843 - 850