Sensor validation and fusion for automated vehicle control using fuzzy techniques

被引:8
|
作者
Goebel, KF
Agogino, AM
机构
[1] GE, Corp Res & Dev, Informat Syst Lab, Niskayuna, NY 12309 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
sensor fusion; data fusion; sensor validation; fuzzy fusion; information fusion;
D O I
10.1115/1.1343909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief introduces a fuzzy sensor validation and fusion methodology and applies it to automated vehicle central in Intelligent Vehicle Highway Systems (NHS). Sensor measurements are assigned confidence values through sensor-specific dynamic validation curves. The validation curves attain minima of zero at the boundaries of the validation gate. These in turn are determined by the largest physically possible change a system-in our example vehicles of the IVHS-can undergo in one time step, A fuzzy exponential weighted moving average time series predictor determines the location of the maximum value of the validation curves. Sensor fusion is then performed using a weighted average of sensor readings and confidence values, and-if available-the functionally redundant values calculated from other sensors.
引用
收藏
页码:145 / 146
页数:2
相关论文
共 50 条
  • [31] Sensor validation and outlier detection using fuzzy limits
    Nasi, Jari
    Sorsa, Aki
    Leiviska, Kauko
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 7828 - 7833
  • [32] REDUNDANT SENSOR VALIDATION BY USING FUZZY-LOGIC
    HOLBERT, KE
    HEGER, AS
    ALANGRASHID, NK
    NUCLEAR SCIENCE AND ENGINEERING, 1994, 118 (01) : 54 - 64
  • [33] Sensor Data Fusion Using Fuzzy Control for VOR-Based Vision Tracking System
    Kwon, Hyun-il
    Park, Jaehong
    Hwang, Wonsang
    Kim, Jong-hyeon
    Lee, Chang-hun
    Anjum, M. Latif
    Kim, Kwang-soo
    Cho, Dong-il
    IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010,
  • [34] Orientation estimating in a non-modeled aerial vehicle using inertial sensor fusion and machine learning techniques
    Fonnegra, Ruben
    Goez, German
    Tobon, Andres
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2019, 16 (04): : 415 - 422
  • [35] Sensor offset compensation for a vehicle yaw rate sensor using fuzzy logic
    Kim, Dae-woo
    Park, Youngho
    Lee, Hyeongcheol
    2007 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-6, 2007, : 2207 - 2211
  • [36] AUTONOMOUS VEHICLE CONTROL USING AL TECHNIQUES
    KEIRSEY, D
    MITCHELL, J
    BULLOCK, B
    NUSSMEIER, T
    TSENG, DY
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1985, 11 (09) : 986 - 992
  • [37] Enhancing Automated Guided Vehicle Navigation with Multi-Sensor Fusion and Algorithmic Optimization
    Wu, Taoyu
    Zhang, Yue
    Zhao, Haocheng
    Yue, Yutao
    Yu, Limin
    Wang, Xinheng
    2024 27TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION, SPEEDAM 2024, 2024, : 557 - 562
  • [38] Multi-sensor information fusion for IoT in automated guided vehicle in smart city
    Liu, Jianjuan
    Liu, Zhongpu
    Zhang, Huijuan
    Yuan, Hang
    Manokaran, Karthik Bala
    Maheshwari, M.
    SOFT COMPUTING, 2021, 25 (18) : 12017 - 12029
  • [39] Multi-sensor information fusion for IoT in automated guided vehicle in smart city
    Jianjuan Liu
    Zhongpu Liu
    Huijuan Zhang
    Hang Yuan
    Karthik Bala Manokaran
    M. Maheshwari
    Soft Computing, 2021, 25 : 12017 - 12029
  • [40] Vehicle localization via sensor fusion using evidence theory
    Zribi, Mourad
    Touil, Khalid
    Benjelloun, Mohammed
    Navigation, Journal of the Institute of Navigation, 2009, 56 (01): : 23 - 33