Sensor validation and fusion for automated vehicle control using fuzzy techniques

被引:8
|
作者
Goebel, KF
Agogino, AM
机构
[1] GE, Corp Res & Dev, Informat Syst Lab, Niskayuna, NY 12309 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
sensor fusion; data fusion; sensor validation; fuzzy fusion; information fusion;
D O I
10.1115/1.1343909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief introduces a fuzzy sensor validation and fusion methodology and applies it to automated vehicle central in Intelligent Vehicle Highway Systems (NHS). Sensor measurements are assigned confidence values through sensor-specific dynamic validation curves. The validation curves attain minima of zero at the boundaries of the validation gate. These in turn are determined by the largest physically possible change a system-in our example vehicles of the IVHS-can undergo in one time step, A fuzzy exponential weighted moving average time series predictor determines the location of the maximum value of the validation curves. Sensor fusion is then performed using a weighted average of sensor readings and confidence values, and-if available-the functionally redundant values calculated from other sensors.
引用
收藏
页码:145 / 146
页数:2
相关论文
共 50 条
  • [1] Model for Automated Vehicle Control using Fuzzy Logic The fuzzy model of the automated control
    Sinitsina, Nadezhda V.
    Yaroslavtsev, Alexander A.
    2017 6TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2017, : 251 - 254
  • [2] Using fuzzy logic in automated vehicle control
    Naranjo, Jose E.
    Gonzalez, Carlos
    Garcia, Ricardo
    de Pedro, Teresa
    Sotelo, Miguel A.
    IEEE INTELLIGENT SYSTEMS, 2007, 22 (01) : 36 - 45
  • [3] Sensor Fusion for Vehicle Control
    Bevly, David M.
    PROCEEDINGS OF THE 31ST INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2018), 2018, : 3217 - 3236
  • [4] Fuzzy sensor data fusion in GPS vehicle positioning
    Zhu, DP
    Zhang, B
    FUSION'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTISOURCE-MULTISENSOR INFORMATION FUSION, VOLS 1 AND 2, 1998, : 259 - 266
  • [5] Fuzzy logic control for an automated guided vehicle
    Cao, M
    Hall, E
    INTELLIGENT ROBOTS AND COMPUTER VISION XVII: ALGORITHMS, TECHNIQUES, AND ACTIVE VISION, 1998, 3522 : 303 - 312
  • [6] A review of sensor fusion techniques for underwater vehicle navigation
    Nicosevici, T
    Garcia, R
    Carreras, M
    Villanueva, M
    OCEANS '04 MTS/IEEE TECHNO-OCEAN '04, VOLS 1- 2, CONFERENCE PROCEEDINGS, VOLS. 1-4, 2004, : 1600 - 1605
  • [7] Automated Navigation and Mobile Vehicle Control using Wireless Sensor Network Technology
    Young, Kar-Keung D.
    Ou, Yong Quan
    Feng, Jun Tao
    Ou, Zhi Liang
    Cai, Lun Hui
    Cheng, Ken Kin Man
    Ho, Jason Kam On
    Tsang, Timmy T. M.
    2008 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-5, 2008, : 1194 - +
  • [8] Automated Vehicle to Vehicle Conflict Analysis at Signalized Intersections by Camera and LiDAR Sensor Fusion
    Anisha, Alabi Mehzabin
    Abdel-Aty, Mohamed
    Abdelraouf, Amr
    Islam, Zubayer
    Zheng, Ou
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (05) : 117 - 132
  • [9] Movement Control Algorithm of Weighted Automated Guided Vehicle Using Fuzzy Inference System
    Sakir, Riesa Krisna Astuti
    Rusdinar, Angga
    Yuwono, Sigit
    Wibowo, Agung Surya
    Silvirianti
    Jayanti, Nadia Tri
    2017 2ND INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING (ICCRE2017), 2017,
  • [10] Introducing a Sensor Network for Advanced Driver Assistance Systems Using Fuzzy Logic and Sensor Data Fusion Techniques
    Ghahroudi, Mahdi Rezaei
    Sarshar, Mohammadreza
    Sabzevari, Reza
    AD HOC & SENSOR WIRELESS NETWORKS, 2009, 8 (1-2) : 35 - 55