In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group G lying in a variety M can be embedded in a 4-generated group H is an element of MA (A means the variety of abelian groups). If G is a finite group, then H can also be found as a finite group. It follows, that any finitely generated (finite) solvable group G of the derived length l can be embedded in a 4-generated (finite) solvable group H of length l + 1. Thus, we answer the question of V. H. Mikaelian and A. Yu. Olshanskii. It is also shown that any countable group G is an element of M, such that the abelianization G(ab) is a free abelian group, is embeddable in a 2-generated group H is an element of MA.
机构:
Politecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
Bruno, Tommaso
Peloso, Marco M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat, Via C Saldini 50, I-20133 Milan, ItalyPolitecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
Peloso, Marco M.
Tabacco, Anita
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
Tabacco, Anita
Vallarino, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy