Bayesian adaptive regression splines for hierarchical data

被引:18
|
作者
Bigelow, Jamie L. [1 ]
Dunson, David B.
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
[2] NIEHS, Biostat Branch, Res Triangle Pk, NC 27709 USA
关键词
adaptive regression splines; hormones; longitudinal data; menstrual cycle; mixed model; random effects; reversible jump MCMC;
D O I
10.1111/j.1541-0420.2007.00761.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article considers methodology for hierarchical functional data analysis, motivated by studies of reproductive hormone profiles in the menstrual cycle. Current methods standardize the cycle lengths and ignore the timing of ovulation within the cycle, both of which are biologically informative. Methods are needed that avoid standardization, while flexibly incorporating information on covariates and the timing of reference events, such as ovulation and onset of menses. In addition, it is necessary to account for within-woman dependency when data are collected for multiple cycles. We propose an approach based on a hierarchical generalization of Bayesian multivariate adaptive regression splines. Our formulation allows for an unknown set of basis functions characterizing the population-averaged and woman-specific trajectories in relation to covariates. A reversible jump Markov chain Monte Carlo algorithm is developed for posterior computation. Applying the methods to data from the North Carolina Early Pregnancy Study, we investigate differences in urinary progesterone profiles between conception and nonconception cycles.
引用
收藏
页码:724 / 732
页数:9
相关论文
共 50 条
  • [21] Adaptive regression splines in the Cox model
    LeBlanc, M
    Crowley, J
    BIOMETRICS, 1999, 55 (01) : 204 - 213
  • [22] MULTIVARIATE ADAPTIVE REGRESSION SPLINES - DISCUSSION
    BUJA, A
    DUFFY, D
    HASTIE, T
    TIBSHIRANI, R
    ANNALS OF STATISTICS, 1991, 19 (01): : 93 - 99
  • [23] Bayesian hierarchical ordinal regression
    Paquet, U
    Holden, S
    Naish-Guzman, A
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 267 - 272
  • [24] Multivariate Adaptive Regression Splines Application for Multivariate Geotechnical Problems with Big Data
    Zhang W.
    Goh A.T.C.
    Zhang Y.
    Geotechnical and Geological Engineering, 2016, 34 (1) : 193 - 204
  • [25] Multivariate Adaptive Regression Splines: A Potential Method for Tissue Culture Data Analysis
    Akin, Meleksen
    Eyduran, Sadiye Peral
    Ercisli, Sezai
    Reed, Barbara M.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2020, 56 (01) : S29 - S29
  • [26] Missing Data Imputation for Continuous Variables Based on Multivariate Adaptive Regression Splines
    Sanchez Lasheras, Fernando
    Garcia Nieto, Paulino Jose
    Garcia-Gonzalo, Esperanza
    Argueso Gomez, Francisco
    Rodriguez Iglesias, Francisco Javier
    Suarez Sanchez, Ana
    Santos Rodriguez, Jesus Daniel
    Luisa Sanchez, Maria
    Gonzalez-Nuevo, Joaquin
    Bonavera, Laura
    Toffolatti, Luigi
    Fernandez Menendez, Susana del Carmen
    de Cos Juez, Francisco Javier
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2020, 2020, 12344 : 73 - 85
  • [27] Adaptive isogeometric analysis with hierarchical box splines
    Kanduc, Tadej
    Giannelli, Carlotta
    Pelosi, Francesca
    Speleers, Hendrik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 817 - 838
  • [28] Adaptive refinement of hierarchical T-splines
    Chen, L.
    de Borst, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 220 - 245
  • [29] ADAPTIVE ISOGEOMETRIC METHODS WITH HIERARCHICAL SPLINES: AN OVERVIEW
    Bracco, Cesare
    Buffa, Annalisa
    Giannelli, Carlotta
    Vazquez, Rafael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (01) : 241 - 261
  • [30] Bayesian smoothing and regression splines for measurement error problems
    Berry, SM
    Carroll, RJ
    Ruppert, D
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 160 - 169