Self-assembling of potassium nanostructures on InAs(110) surface

被引:6
|
作者
Gavioli, L
Padovani, M
Spiller, E
Sancrotti, M
Betti, MG
机构
[1] Univ Cattolica Sacro Cuore, INFM, I-25121 Brescia, Italy
[2] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[3] INFM, TASC, Lab Nazl, I-34012 Trieste, Italy
[4] Univ Roma La Sapienza, INFM, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, Dipartmento Fis, I-00185 Rome, Italy
关键词
scanning tunneling microscopy; surface structure; morphology; roughness; and topography; alkali metals; indium arsenide; metal-semiconductor interfaces;
D O I
10.1016/S0039-6028(03)00122-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Potassium induced one-dimensional nanostructures are formed by deposition on the InAs(I 10) surface held at about 420 K, as observed by scanning tunneling microscopy. The K adatoms self-aggregate in zigzag chains oriented along the [110] direction even at very low coverage. By increasing the K density, the atomic chains pack together, though keeping a minimum distance of 18.2 Angstrom. At the completion of the first layer, the nanostructures extend over the entire surface giving rise to a clear c(2 x 6) low energy electron diffraction pattern. At higher coverage, a second ordered overlayer is formed. The results are discussed in terms of recent theoretical calculations and experimental work on the model system of Cs chains self-assembled on the InAs(l 10) surface. The structural model proposed for a single chain is used to discuss the evolution of the overlayer structure as a function of coverage. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:666 / 670
页数:5
相关论文
共 50 条
  • [31] Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets
    Chow, Lesley W.
    Wang, Ling-jia
    Kaufman, Dixon B.
    Stupp, Samuel I.
    BIOMATERIALS, 2010, 31 (24) : 6154 - 6161
  • [32] Chiral templating of self-assembling nanostructures by circularly polarized light
    Yeom, Jihyeon
    Yeom, Bongjun
    Chan, Henry
    Smith, Kyle W.
    Dominguez-Medina, Sergio
    Bahng, Joong Hwan
    Zhao, Gongpu
    Chang, Wei-Shun
    Chang, Sung-Jin
    Chuvilin, Andrey
    Melnikau, Dzmitry
    Rogach, Andrey L.
    Zhang, Peijun
    Link, Stephan
    Kral, Petr
    Kotov, Nicholas A.
    NATURE MATERIALS, 2015, 14 (01) : 66 - 72
  • [33] SELF-ASSEMBLING PEPTIDIC NANOSTRUCTURES VIA ASYMMETRIC HYDROPHOBIC COLLAPSE
    Cui, H.
    Pashuck, E. T.
    Cheetham, A.
    Tsai, W.
    Mui, S.
    Stupp, S.
    BIOPOLYMERS, 2009, 92 (04) : 318 - 319
  • [34] Novel self-assembling cyclic peptides with reversible supramolecular nanostructures
    Ciulla, Maria Gessica
    Fontana, Federico
    Lorenzi, Roberto
    Marchini, Amanda
    Campone, Luca
    Sadeghi, Ehsan
    Paleari, Alberto
    Sattin, Sara
    Gelain, Fabrizio
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (17) : 3680 - 3692
  • [35] Influence of self-assembling growth on the shape and the orientation of silicon nanostructures
    Gossner, H
    Rupp, T
    Eisele, I
    JOURNAL OF CRYSTAL GROWTH, 1995, 157 (1-4) : 308 - 311
  • [36] Faceting evolution during self-assembling of InAs/InP quantum wires
    Gutiérrez, HR
    Cotta, MA
    de Carvalho, MMG
    APPLIED PHYSICS LETTERS, 2001, 79 (23) : 3854 - 3856
  • [37] Microgel Surface Modification with Self-Assembling Peptides
    Clarket, Kimberly C.
    Lyon, L. Andrew
    MACROMOLECULES, 2016, 49 (15) : 5366 - 5373
  • [38] SURFACE CHEMISTRY Self-assembling Sierpinski triangles
    Tait, Steven L.
    Nature Chemistry, 2015, 7 (05) : 370 - 371
  • [39] Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers
    Accardo, Antonella
    Tesauro, Diego
    Mangiapia, Gaetano
    Pedone, Carlo
    Morelli, Giancarlo
    BIOPOLYMERS, 2007, 88 (02) : 115 - 121
  • [40] Chemobrionic Fabrication of Hierarchical Self-Assembling Nanostructures of Copper Oxide and Hydroxide
    Escamilla-Roa, Elizabeth
    Cartwright, Julyan H. E.
    Ignacio Sainz-Diaz, C.
    CHEMSYSTEMSCHEM, 2019, 1 (03)