Causal non-stationary thermodynamics of non-viscous heat conducting fluids with internal variables

被引:0
|
作者
Cimmelli, VA [1 ]
Francaviglia, M
机构
[1] Univ Basilicata, Dept Math, I-85100 Potenza, Italy
[2] Univ Turin, Dept Math, I-10123 Turin, Italy
关键词
relativistic thermodynamics; causality principle;
D O I
10.1023/A:1012271124632
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Relativistic non-viscous heat conducting fluids with a vectorial internal variable are modeled according to the dissipation and causality principles. A set of constitutive equations, ensuring the causal nature of the model, is postulated. The second law of thermodynamics is exploited by analyzing a suitable covariant form of the Clausius-Duhem inequality. A modification of the classical theory of heat conduction, allowing a finite speed of propagation of thermal disturbances, is considered.
引用
收藏
页码:1427 / 1447
页数:21
相关论文
共 50 条
  • [21] NON-STATIONARY EQUATIONS OF VISCOUS FLUID DYNAMICS
    SOBOLEVSKII, PE
    DOKLADY AKADEMII NAUK SSSR, 1959, 128 (01): : 45 - 48
  • [22] ON THE NON-STATIONARY THEORY OF INTERNAL WAVES
    GABOV, SA
    ORAZOV, BB
    SVESHNIKOV, AG
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (04): : 170 - 177
  • [23] Non-stationary flows of asymptotically Newtonian fluids
    Breit, Dominic
    Stroffolini, Bianca
    Verde, Anna
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (02)
  • [24] THERMODYNAMIC DESCRIPTION AND STABILITY CONDITION OF A NON-VISCOUS PLASMA IN STATIONARY MOTION
    LEBON, G
    CASASVAS.J
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 86 (02): : 227 - &
  • [25] Field equations for incompressible non-viscous fluids using artificial intelligence
    Karthik, P. C.
    Sasikumar, J.
    Baskar, M.
    Poovammal, E.
    Kalyanasundaram, P.
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (01): : 852 - 867
  • [26] NONSTATIONARY THERMODYNAMICS AND WAVE-PROPAGATION IN HEAT CONDUCTING VISCOUS FLUIDS
    BAMPI, F
    MORRO, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (03): : 631 - 638
  • [27] Field equations for incompressible non-viscous fluids using artificial intelligence
    P. C. Karthik
    J. Sasikumar
    M. Baskar
    E. Poovammal
    P. Kalyanasundaram
    The Journal of Supercomputing, 2022, 78 : 852 - 867
  • [28] The Non-Incompressibility on Heat-Conducting Fluids. The Stationary Case
    Luisa Consiglieri
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 379 - 396
  • [29] The Non-Incompressibility on Heat-Conducting Fluids. The Stationary Case
    Consiglieri, Luisa
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (03) : 379 - 396
  • [30] Instrumental variables estimation of stationary and non-stationary cointegrating regressions
    Robinson, PM
    Gerolimetto, M
    ECONOMETRICS JOURNAL, 2006, 9 (02): : 291 - 306